Cho tam giác ABC có AD là đường phân giác xuất phát từ đỉnh A . Gọi E và F lần lượt là hình chiếu của B và C trên AD .Chứng minh rằng :tam giác ABE đồng dạng vs tam giác ACF
Cm BH.BE+BC.DC = 4BM²Cm tanB.tanC =\(\frac{AD}{BD}\)cho tam giác ABC vuông tại A, đường phân giác AD. Gọi E, F lần lượt là hình chiếu của D trên AB, AC. Biết BD = 3, DC = 4. Chứng minh rằng: AEDF là hình vuông và tính diện tích của nó
Cho hình bình hành ABCD có AC giao BD tại 0 , AC> BD . Gọi E,F lần lượt là hình chiếu của B và D trên đường thẳng AC . Gọi H và K lần lượt là hình chiếu của C trên đường thẳng AB và AD .
a\ Chứng minh tam giác BEO đồng dạng với tam giác DFO . Từ đó chứng minh EO = FO
b\ Chứng minh CH.CD = CB.C
Cho tam giác ABC vuông tại A, có AC > AB và đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC
a, Chứng minh AD.AB = AE.AC và tam giác ABC đồng dạng với tam giác AED
b, Cho biết BH = 2 cm, HC = 4,5 cm:
i, Tính độ dài đoạn thẳng DE
ii, Tính số đo góc ABC (làm tròn đến độ)
iii, Tính diện tích tam giác ADE
Cho tam giác ABC vuông tại A Biết AB = 3 cm, BC = 5 cm
a, Giải tam giác vuông ABC (số đo góc làm tròn đến độ)
b, Từ B kẻ đường thẳng vuông góc với BC, đường thẳng này cắt đường thẳng AC tại D. Tính độ dài các đoạn thẳng AD, BD
c, Gọi E, F lần lượt là hình chiếu của A trên BC và BD. Chứng minh hai tam giác BEF và BDC đồng dạng
Cho tam giác ABC vuông tại A , đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên cạnh AB và AC.
a) Chứng minh rằng: AE.AB=AF.AC
b) Chứng minh rằng nếu diện tích tan giác ABC bằng 2 lần diện tích tứ giác AEHF thì tam giác ABC vuông cân.
Cho tam giác ABC có AB=4,5cm AC=6cm và BC=7,5 cm a)Chứng minh rằng tam giác ABC vuông b)Kẻ phân giác AD. Gọi M và N lầ lượt là hình chiếu vuông góc của D trên AB và AC. Tính diện tích tứ giác AMDN
1 . Cho tam giác ABC có góc A =90o,AB =80 cm,AC=60 cm,AH là đường cao, AI là phân giác(H và I thuộc BC)
a.Tính BC,AH,BI,CI
b.Chứng minh tam giác ABC và tam giác HAC đồng dạng
c.HM và HN là phân giác của tam giác ABH và tam giác ACH. Chứng monh tam giác MAH và tam giác NCH đồng dạng.
d.Chứng minh tam giác ABC và tam giác HMN đồng dạng rồi chứng minh tam giác MAN vuông cân
e.Phân giác của góc ACB cắt HN ở E, phân giác của góc ABC cắt HM ở F. Chứng minh EF song song với MN
f.Chứng minh:BF.EC=AF. AE
2 ,
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD , BE, CF cắt nhau tại H.
a)Chứng minh tam giác AEF đồng dạng với tam giác ABC.
b)Chứng minh tam giác AEF đồng dạng với tam giác DBF.
3 .
Cho tam giác ABC vuông tại A , AB=9cm; AC=12cm. đường cao AH, đường phân giác BD.Kẻ DE vuông góc với BC(E thuộc BC), đường thẳng DE cắt đường thẳng AB tại F.
a.Tính BC, AH?
b.Chứng minh tam giác EBF đồng dạng với tam giác EDC
c.Gọi I là giao điểm của AH và BD.Chứng minh.AB.BI=BH.BD
d.Chứng minh BD vuông góc với CF
e.Tính tỉ số diện tích của 2 tam giác ABC và BCD
giải phương trình : x^2 - 2x -3=-4
1 . Cho tam giác ABC có góc A =90o,AB =80 cm,AC=60 cm,AH là đường cao, AI là phân giác(H và I thuộc BC)
a.Tính BC,AH,BI,CI
b.Chứng minh tam giác ABC và tam giác HAC đồng dạng
c.HM và HN là phân giác của tam giác ABH và tam giác ACH. Chứng monh tam giác MAH và tam giác NCH đồng dạng.
d.Chứng minh tam giác ABC và tam giác HMN đồng dạng rồi chứng minh tam giác MAN vuông cân
e.Phân giác của góc ACB cắt HN ở E, phân giác của góc ABC cắt HM ở F. Chứng minh EF song song với MN
f.Chứng minh:BF.EC=AF. AE
2 ,
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD , BE, CF cắt nhau tại H.
a)Chứng minh tam giác AEF đồng dạng với tam giác ABC.
b)Chứng minh tam giác AEF đồng dạng với tam giác DBF.
3 .
Cho tam giác ABC vuông tại A , AB=9cm; AC=12cm. đường cao AH, đường phân giác BD.Kẻ DE vuông góc với BC(E thuộc BC), đường thẳng DE cắt đường thẳng AB tại F.
a.Tính BC, AH?
b.Chứng minh tam giác EBF đồng dạng với tam giác EDC
c.Gọi I là giao điểm của AH và BD.Chứng minh.AB.BI=BH.BD
d.Chứng minh BD vuông góc với CF
e.Tính tỉ số diện tích của 2 tam giác ABC và BCD
giải phương trình : x^2 - 2x -3=-4