Cho tam giác ABC có AB = AC = BC, D là trung điểm của BC. Trên tia đối của tia BC lấy điểm F, trên tia đối của tia AB, lấy E sao cho AE = BF. Chứng minh:
a. AD là phân giác cua góc BAC
b. AF = CE
c.Cho FA vuông góc với AC. Chứng minh: AD song song với CE
Cho tam giác ABC có AM = AC. Tia phân giác của góc BAC cắt BC tại D.
a/ Chứng minh tam giác ABD = tam giác ACD.
b/ Trên tia đối của tia AD lấy điểm E sao cho AE = AD và trên tia đối của tia AB lấy điểm F sao cho AF = AB. Chứng minh AF = AB.
c/ Gọi H là trung điểm của FC. Chứng minh AH là phân giác của góc CAF.
d/ Chứng minh AH // BC
cho tam giác abc có góc b+c =60độ trên đường phân giác AD của góc A lấy điểm I trên tia đối của tia AC lấy E sao cho AE=AI trên tia đối của tia AB lấy F sao cho AE= AI=AF cm AB và AC là đường trung trực của IE vaIF . cm tam giác IEF đều .cm IA vuông góc với EF
Bài 1: Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và // với BC cắt AC ở E. Đường thẳng qua E và // với AB cắt BC ở F. CMR:
a) AD = EF
b) Tam giác ADE = tam giác EFC
Bài 2: Cho tam giác ABC, tia phân giác của góc C cắt AB ở D. Trên tia đối của tia CA lấy điểm E sao cho CE = CB.
a) CM CD//EB
b) Tia phân giác của góc E cắt đường thẳng CD tại F. Vẽ CK vuông góc với EF tại K. CM CK là tia phân giác của góc ECF
Bài 3: Cho tam giác ABC cân tại A, trên tia AB lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho CE=BD, DE cắt BC tại I. Trên tia đối của tia BC lấy điểm F sao cho BF=CI. CMR:
a) Tam giác BFD = tam giác CIE
b) Tam giác DFI cân
c) I là trung điểm của DE
giúp mình với nhé!
\(\text{Cho tam giác ABC ( AB = AC), AM là phân giác của góc BAC ( M thuộc BC) a) CM: M là trung điểm của BC. b) Trên tia đối của tia AB lấy E, trên tia đối của tia AC lấy điểm F sao cho AE = AF. CM: tam giác BCE = tam giác CBF c) CM: ME = MF d) Gọi N là trung điểm EF. CM: A, M, N thẳng hàng}\)
\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b) ABC = KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có B = C , kẻ AH BC, H BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK AD, CI AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)
cho tam giác ABC có góc B=góc C, tia phân giác của góc A cắt BC tại D.
a/. chứng minh AD vuông góc với BC và AB=AC
b/. trên tia đối của BC lấy điểm E, trên tia đối của CB lấy điểm F, sao cho BE=CF. chứng minh AF bằng AE và AD là đường trung trực của EF. (giúp mình với ạ)
Cho tam giác ABC có AB=AC và M là trung điểm của BC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE
a) Chứng minh tam giác ABM= tam giác ACM từ đó suy ra AM vuông góc vs BC
b) Chứng minh tam giác ABD= tam giác ACE từ đó suy ra AM là tia phân giác của góc DAE
c) Kẻ BK vuông góc AD( K thuộc AD) trên tia đối của tia BK lấy điểm H sao cho BH=AE, trên tia đối của tia AM lấy điểm N sao cho AN=CE, Chứng minh góc MAD= góc MBH
d) Chứng minh Dn vuông góc DH