a) Sửa đề: Chứng minh ΔADB=ΔADC
Xét ΔADB và ΔADC có
AD chung
DB=DC(D là trung điểm của BC)
AB=AC(ΔABC cân tại A)
Do đó: ΔADB=ΔADC(c-c-c)
a) Sửa đề: Chứng minh ΔADB=ΔADC
Xét ΔADB và ΔADC có
AD chung
DB=DC(D là trung điểm của BC)
AB=AC(ΔABC cân tại A)
Do đó: ΔADB=ΔADC(c-c-c)
Cho tam giác ABC có AB bằng AC Gọi D là trung điểm của BC A)chứng minh tam giác ADB bằng tam giác ADC B)Chứng minh AD là phân giác của tam giác ABC C)vẽ DM vuông góc với AB(M thuộc AB) DN vuông góc với AC (N thuộc AC) Chứng minh rằng tam giác ADM bằng tam giác AND và MN//BC
Cho tam giác ABC. Tia phân giác góc BAC cắt cạnh BC tại điểm D. Kẻ DM. vuông góc với AB, DN vuông góc với AC ( M ∈ A B , N ∈ A C ) . Chứng minh ∆ A D M = ∆ A D N .
Cho tam giác ABC cân tại B và D là trung điểm của AC vẽ DM vuông góc với AB tại M và trên tia DM lấy điểm N sao cho M là trung điểm của DN. Vẽ DP vuông góc với BC tại P và trên tia DP lấy điểm Q sao cho P là trung điểm của DQ. Chứng minh:
a) Tam giác MPD cân tại D.
b) Tam giác NQB cân tại B.
Cho tam giác ABC vuông tại A.
b1a. Cho biết AB = 9cm; BC =15cm. Tính AC rồi so sánh các góc của tam giác ABC.
b. Trên BC lấy điểm D sao cho BD = BA. Từ D vẽ đường thẳng vuông góc với BC cắt AC tại E. Chứng minh: ΔEBA = ΔEBD.
c. Lấy F sao cho D là trung điểm của EF. Từ D vẽ DM ⊥ CE tại M, DN ⊥ CF tại N. Cho góc ECF = 60º và CD = 10cm . Tính MN.
b2 Cho tam giác ABC cân tại A ( góc A < 90º) . Vẽ AH vuông góc với BC tại H.
a. Chứng minh: ΔAHC = ΔAHB.
b. Kẻ HM vuông góc với AC tại M. Trên tia đối của tia HM lấy điểm N sao cho HN = HM.
c. Chứng minh: BN // AC.
d. Kẻ HQ vuông góc với AB tại Q. Chứng minh BC là đường trung trực của NQ
cho tam giác ABC cân tại A, AD là tia phân giác của góc BAC (D thuộc BC ). a, Chứng minh tam giác ADB = tam giác ADC b, Chứng minh AD vuông góc BC c, Kẻ DM vuông góc AB ,DN vuông góc AC. Chứng minh AM = AN. d, Chứng minh MN // BC.
Cho tam giác ABC cân tại A ( Góc A là góc nhọn ) . VẼ AD vuông góc với BC tại D , DM vuông góc với AB tại M , DN vuông góc với AC tại N
a ) CM : tam giác DAB = tam giác DAC
b) CM : tam giác DMN cân
c) Gọi E là giao điểm của MD và AC , F là giao điểm của AB và ND . Chứng minh rằng BC // EF
Cho tam giác ABC cân tại A . vẽ phân giác ad[d thuộc bc]. kẻ dm vuông góc ab[ m thuộc ab],dn vuông góc ac[ n thuộc ac] a]chứng minh am=an b/ chứng minh mn//bc c/ trên tia đối của m lấy điểm e sao cho md=me, trên tia đối của tia nd lấy điểm f sao cho nd=nf. chứng minh tam giác aef cân
Cho Tam giác ABC vuông tại A ( AB < AC ). Kẻ tia phân giác của ABC cắt BC tại D. Kẻ DM vuông góc với BC tại M.
a) Chứng minh Tam giác DAB = tam giác DMB.
b) Chứng minh BD vuông góc với AM
c) Gọi K là giao điểm của đường thẳng DM và đường thẳng AB . Chứng minh AM // KC
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC Kẻ MH vuông góc với AB tại H, MK vuông góc với AC tại K Chứng minh:
a) tam giác AMB = tam giác AMC b) AM vuông góc với BC c)HA = KA; HB = AC d) HK song song với BC
Giúp mình với, mik đng cần gấp. Cảm ơn các bạn nhìu!!!