Sửa đề: Cho tam giác ABC có \(\widehat{BAC}=90^0\)
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=9^2+12^2=225\)
=>\(CB=\sqrt{225}=15\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot15=9\cdot12=108\)
=>AH=108/15=7,2(cm)
ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(HB^2+7,2^2=9^2\)
=>\(HB^2=9^2-7,2^2=29,16\)
=>\(HB=\sqrt{29,16}=5,4\left(cm\right)\)
b: Xét ΔBMD vuông tại M và ΔBAC vuông tại A có
\(\widehat{MBD}\) chung
Do đó: ΔBMD~ΔBAC
d: Xét ΔBCD có
CA,DM là các đường cao
CA cắt DM tại E
Do đó: E là trực tâm của ΔBCD
=>BE\(\perp\)DC