Bài 3: Cho tam giác ABC vuông tại A có BC = 20 cm, AC = 16 cm. Vẽ đường cao AH.
a) Chứng minh: HBA ABC; HBA HAC.
b) Chứng minh: AB2 = BH. BC; AH2 = HB.HC
c) Tính AB, AH, BH.
d) Vẽ đường phân giác AD của tam giác ABC (D BC). Tính BD, CD. (Kết quả làm tròn đến chữ số thập phân thứ nhất).
e*) Trên AH lấy điểm K sao cho AK = 3,6cm. Từ K kẻ đường thẳng song song với BC, cắt AB và AC lần lượt tại M và N. Tính diện tích tứ giác BMNC.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC
Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA\(\sim\)ΔHAC
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\)(hệ thức lượng)
c: \(AB=\sqrt{BC^2-AC^2}=12\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)
\(BH=\sqrt{AB^2-AH^2}=7.2\left(cm\right)\)