Cho tam giác ABC có AB=4, AC = 5 , BAC =120°. G là trọng tâm của tam giác ABC, điểm E thỏa mãn vector AE=2/3 vector EC
a) Biểu diễn BE theo AB,AC.
b) Tìm tập hợp điểm I thỏa mãn đẳng thức vec tơ |IA+IG|=|IA–IG|.
c) M là một điểm khác G thỏa(GC-GB)(MA+MB+MC)=0. Chứng minh MG vg BC.
vector het nha
Câu 1: cho tam ABC. Có bao nhiêu điểm M thỏa mãn | vecto MA+vectoMB+vectoMC| = 3
a.1
b.2
c.3
d. vô số
Câu 2: cho tam giác ABC đều cạnh a. biết rằng tập hợp các điểm M thỏa mãn đẳng thức |2vectoMA+3vectoMB+4vectoMC|=|vectoMB-vectoMA| là đường tròn cố định có bán kính R. tính bán kính R theo A?
Câu 3: Cho 2 điểm A.B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức |2vectoMA+vectoMB|=|vectoMA+2vectoMB| là:
a. đường trung trực của đoạn thẳng AB
b. đường tròn đường kính AB
c. đường trung trực của đoạn thẳng IA
d. đường tròn tâm A, bán kính AB
Cho Tam giác ABC, trên cạnh AB, AC lấy hai điểm M, N thỏa mãn 4MA=3MB,
2NA=NC. Gọi I là giao điểm BN và CM. Chứng minh rằng: \(4\overrightarrow{AI}=3\overrightarrow{IB}+2\overrightarrow{IC}\)
Cho AB = a > 0 với I là trung điểm AB. Tìm tập hợp các điểm M thỏa mãn điều kiện MA2 + MB2 = a2
Cho tam giác ABC, gọi D là điểm trên cạnh BC sao cho vecto BD=2/3 vecto BC và I là trung điểm của AD. Gọi M là điểm thỏa mãn vecto AM=2/5 vecto AC. Chứng minh B,I,M thẳng hàng
Cho tam giác ABC, gọi D là điểm trên cạnh BC sao cho vecto BD=2/3 vecto BC và I là trung điểm của AD. Gọi M là điểm thỏa mãn vecto AM=2/5 vecto AC. Chứng minh B,I,M thẳng hàng
cho tam giác ABC vuông tại A có AB=1,AC= căn 2.Gọi d là đường thẳng qua A và song song BC,điểm M di động trên d.Tìm minP=MA+MB+2MC
Cho tam giác ABC và điểm M thỏa mãn M A → + M B → + 2 M C → = 0 → Khi đó điểm M là:
A. Trọng tâm tam giác ABC
B. Trung điểm của AB
C. Trung điểm của CC’ (C’ là trung điểm của AB)
D. Đỉnh thứ tư của hình bình hành ACBM
Cho I; J; K lần lượt là trung điểm của các cạnh AB; BC; CA của tam giác ABC. Giả sử M là điểm thỏa mãn điều kiện M A → + 2 M B → + M C → = 0 → . Khi đó vị trí điểm M là:
A. M là giao điểm 2 đường chéo của hình bình hành BIKJ.
B.M là đỉnh thứ tư của hình bình hành AIKM.
C. M là trực tâm của tam giác ABC.
D.M là trọng tâm của tam giác IJK.