a: Xét ΔABE và ΔAHE có
AB=AH
góc BAE=góc HAE
AE chung
Do đó: ΔABE=ΔAHE
b: Xét ΔABC có AE là phân giác
nên BE/AB=CE/AC
mà AB<AC
nên BE<CE
a: Xét ΔABE và ΔAHE có
AB=AH
góc BAE=góc HAE
AE chung
Do đó: ΔABE=ΔAHE
b: Xét ΔABC có AE là phân giác
nên BE/AB=CE/AC
mà AB<AC
nên BE<CE
Cho tam giác ABC vuông ở A. Trên tia đối của tia AB, lấy điểm E sao cho AB= 2AE. Trên tia đối của tia AC lấy điểm F sao cho AC= 2AF. a) Chứng minh FE//BC. b) Kẻ AH vuông góc với BC tại H. Chứng minh AC2 = CH.CB c) Vẽ tia phân giác CD của góc ACB ( D thuộc AB), CD cắt AH ở I. Chứng minh IH AD IA DB . d) Cho AF= 1,5cm; AE= 2cm. Tính độ dài AH và diện tích tam giác HI
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
Bài 1 : Cho tam giác ABC vuông tại A ( AB<AC). Tia phân giác của góc B cắt AC tại D. Trên BC lấy E sao cho BE = BA.
a) Tính độ dài BC, biết AB= 6cm, AC= 8cm
b) chứng minh tam giác ABD=tam giác EBD
c) kẻ đường cao AH của tam giác ABC. Chứng minh tứ giác ADEH là hình thang vuông.
Bài 2: Cho tam giác ABC vuông tại A, AB= 9cm, AC=12cm, đường trung tuyến AM. Qua M vẽ ME vuông góc với AB tại E, vẽ MF vuông góc với AC tại F
a) C/m tứ giác AEMF là hình chữ nhật
b) tinh độ dài BC, AM
c) trên tia đối của tia MA lấy điểm H sao cho MA= MH. C/m ABHC là hình chữ nhật
d) gọi điểm D là điểm đối xứng của M qua F. C/m ADCM là hình vuông
e) tìm thêm điều kiện của tam giác ABC để tứ giác ADCM là hình vuông.
Bài 3: Cho tam giác ABC cân tại A. gọi M là trung điểm của BC, N là điểm đối xứng với A qua M
a) C/m tứ giác ABNC là hình thoi
b) Qua điểm A, vẽ đường thẳng song song với BC, cắt NC tại D. C/m AD=BC
c) kẻ đường cao AH của tam giác ADN, tính độ dài AH, biết AD= 9cm, AN=12cm
Bài 4 cho tam giác ABC cân tại A có AM là đường phân giác ( M thuộc BC). Từ M lần lượt kẻ các đường thẳng song song với AB và AC, Các đường thẳng này cắt AC tại N, Cắt AB tại E.
a) tứ giác AEMN là hình gì ? vì sao ?
b) gọi D là điểm đối xứng của M qua N. C/m tứ giác ADMB là hình bình hành
c) c/m tứ giác ADCM là hình chữ nhật
d) tam giác ABC có thêm điều kiện gì để tứ giác ADCM là hình vuông?
Bài 1
Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE
a) Chứng minh rằng HK song song
với DE
b) Tính HK, biết chu vi tam giác ABC bằng 10 cm
Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB
Bài 3 Cho tam giác ABC cân tại A, đường cao AH. Gọi I là trung điểm của AH, E là giao điểm của BI và AC. Tính các độ dài AE và EC, biết AH = 12 cm, BC = 18 cm
1. Cho tam giác ABC có M là trung điểm của AC trên tia đối của tia BA lấy điểm D sao cho AB = BD gọi E là giao điểm của DM với BC.
a) so sánh DE và EC ; ME và DM
b) Gọi N là trung điểm của DC chứng minh 3 điểm A,E,N thẳng hàng.
2. Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD=AB. Trên cạnh AC lấy điểm E sao cho AE=1/3AC. Tia BE cắt CD tại M. Chứng minh M là trung điểm của CD
* Kẻ hình hộ mình vs
* mình đang cần gấp nha
cho tam giác abc vuông tại a . tia phân giác của góc abc cắt ac tại d . lấy e trên cạnh bc sao cho be =ab
a, chứng minh tam giác abd= tam giác ebd
b, tại tia ed cắt ba tại m chứng minh ec = am
c, nối ae , chứng minh góc aec = góc eam
Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi
1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại F
Chứng minh tam giác ADE đồng dạng với tam giác BFE
2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AK
Chứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB2 = BK.BC
3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm E sao cho AE 18cm trên cạnh AC lấy F sao cho AF = 6 cm
So sánh AE/AC;AF/AB
4) Cho tam giác ABC vuông tại A đường cao AH cắt phân giác BD tại I
Chứng minh rằng a,IA.BH = IH.BA
b,Tam giác ABC đồng dạng với tam giác HBA
5) cho tam giác AOB có AB bằng 18 cm OA = 12 cm OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD bằng 3 cm. Qua D kẻ đường thẳng song song với AB cắt AO ở C. Gọi F là giao điểm của AD và BC
Tính độ dài OC;CD
6) Cho tam giác nhọn ABC có AB bằng 12 cm AC bằng 15 cm. Trên các cạnh AB và AC lấy các điểm D và E sao cho AD = 4 cm,AE = 5cm
Chứng minh rằng DE // BC, Từ đó suy ra tam giác ADE đồng dạng với tam giác ABC?
7) Cho tam giác ABC vuông tại A D nằm giữa A và C. Kẻ đường thẳng D vuông góc với BC tại E và cắt AB tại F
Chứng minh tam giác ADF đồng dạng với tam giác EDC
Cho tam giác ABC vuông tại A (AB < AC) có AH là đường cao. Trên tia HC lấy điểm D sao cho HD=HB Kẻ DE vuông AC ở E, HK vuông AC ở K,Chứng minh:
a) So sánh KA và KE
b) Chứng minh tam giác AHE cân
c) Gọi M là trung điểm của DC. Chứng minh góc HEM = 90 độ
1) Cho tam giác AOB có AB = 18cm; OA = 12cm; OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm của AD và BC.
a) Tính độ dài OC; CD
b) Chứng minh rằng FD. BC = FC.AD
c) Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Chứng minh: OM=ON.
2) Cho tam giác ABC có AB = 8cm; AC = 12cm. Trên cạnh AB lấy điểm D sao cho BD = 2cm, trên cạnh AC lấy điểm E sao cho AE = 9cm.
a) Tính các tỉ số AE/AD;AD/AC
b) Chứng minh: tam giác ADE đồng dạng tam giác ABC
c) Đường phân giác của góc BAC cắt BC tại I. Chứng minh: IB.AE = IC.AD
Cho tam giác ABC cân tại A . Trên cạnh AB lấy D . Tên tia đối CA lấy E sao cho BD = CE . I là gia điểm của BC và DE . Từ D kẻ tia // với AC cắt BC ở K .
a) Chứng minh : tam giác BDK cân
b) Tứ giác DCEK là hình gì ?
c) So sánh độ dài các đoạn thẳng DI và IE