Cho tam giác ABC có AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BD.
a) Chứng minh: tam giác ABM= tam giác ADM.
b) Chứng minh: AM là tia phân giác của góc BAC.
c) Tia AM cắt cạnh BC tại K. Cm: tam giác ABK = tam giác ADK.
d) trên tia đối của BA lấy điểm H sao cho BH = DC. Cm: 3 điểm H, K, D thẳng hàng
a: Xét ΔAMB và ΔAMD có
AM chung
MB=MD
AB=AD
Do đó: ΔAMB=ΔAMD
b: Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
c: Xét ΔKBE và ΔKDC có
KB=KD
\(\widehat{KBE}=\widehat{KDC}\)
BE=DC
Do đó: ΔKBE=ΔKDC
Suy ra: \(\widehat{BKE}=\widehat{DKC}\)
=>\(\widehat{BKE}+\widehat{BKD}=180^0\)
hay E,K,D thẳng hàng