a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
cho tam giác ABC có AB=AC góc BAC<90 độ. trên cạnh AB lấy D, trên AC lấy E sao cho AD=AE. gọi I là giao điểmcủa BE và CD, H là trung điểm của BC chứng minh rằng
a, BE=CD
b, tam giác IBD= tam giác ICE
c, 3 điểm AIH thẳng hàng
Cho tam giác ABC cân tại A . Trên cạnh AB lấy điểm D trên cạnh AC lấy điểm E sao cho AD = AE Gọi M là giao điểm của BE và CD Chứng minh rằng
a, BE=CD
b,tam giác BMD=tam giác CME
c, AM là tia phân giác của góc BAC
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD=AE. Gọi M là giao điểm của BE và CD
a, CM: BE=CD
b, Chứng minh tam giác BMD=Tam giác CME
c, Chứng minh AM là phân giác của góc BMC
cho tam giác abc cân tại A. trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD =AE . Gọi M là giao điểm của BE và CD
Chứng minh rằng :
a) BE = CD
b) tam giác BMD = Tam giác CME
c) AM là tia phân giác của góc BAC
Cho ∆ABC cân ở A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho
AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:
a) BE = CD
b) ∆ BMD = ∆CME
c) AM là tia phân giác của góc BAC.
Cho tam giác ABC có AB=AC.Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD=AE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) BE=CD
b)Tam giác BMD=Tam giác CME
c)AM là tia phân giác của góc BAC.
Bài 1.13: Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a) Chứng minh: AB = CD
b) Chứng minh: BD // AC
c) Tính số đo góc ABD
Bài 1.14: Cho tam giác ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:
a) BE = CD
b) ∆BMD = ∆CNE
c) AM là tia phân giác của góc BAC
Cho tam giác ABC . Có AB = AC . Lấy điểm D trên cạnh AB . Lấy điểm E trên cạnh AC sao cho AD = AE a) Chứng minh BE = CD b) Gọi O là giao điểm của BE và CD . Chứng minh rằng tam giác BOD bằng tam giác COE
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, AC lấy điểm E sap cho AD=AE. Gọi M là giao điểm của BE và CD. Chứng minh:
a) BE=CD
b) Tam giác BMD= tam giác CME
c) AM là tia phân giác của góc BAC