A ^ = 120 0 => O A C ^ = 60 0
=> ∆OAC đều => R = AC = 30cm
=> C = 2πR = 6π cm
A ^ = 120 0 => O A C ^ = 60 0
=> ∆OAC đều => R = AC = 30cm
=> C = 2πR = 6π cm
Tam giác ABC có AB =AC= 3cm; góc A= 120 . Độ dài đường tròn ngoại tiếp tam giác ABC là:
Cho tam giác cân ABC có góc B = 120 ° ,AC = 6cm.Tính độ dài đường tròn ngoại tiếp tam giác đó
Cho tam giác ABC vuông tại A. Gọi r và R lần lượt là bán kính đường tròn nội tiếp và ngoại tiếp của tam giác ABC. Biết r = 3cm, R = 5cm.
Tổng độ dài 2 cạnh AB và AC là .......cm.
Cho tam giác ABC vuông tại A. Gọi r và R lần lượt là bán kính đường tròn nội tiếp và ngoại tiếp của tam giác ABC. Biết r = 3cm, R = 5cm.
Tổng độ dài 2 cạnh AB và AC là
cho tam giác ABC có cạnh BC = 137,5 ; góc B = 83 độ ; góc C = 57 độ . tính góc A và bán kính đường tròn ngoại tiếp tam giác ABC ; độ dài cạnh AC , AB
1.Tính độ dài đường tròn ngoại tiếp
a) 1 lục giác đều có cạnh bằng 4 cm.
b) 1 hình vuông cạnh 4 cm
c) 1 tam giác đều cạnh 6 cm
2. Cho tam giác ABC cân có góc B=120°, AC bằng 6 cm. Tính độ dài đường tròn ngoại tiếp đó
Cho tam giác ABC có B A C ⏜ = 60 0 , A C = b , A B = c b > c . Đường kính EF của đường tròn ngoại tiếp tam giác ABC vuông góc với BC tại M (E thuộc cung lớn BC). Gọi I và J là chân đường vuông góc hạ từ E xuống các đường thẳng AB và AC. Gọi H và K là chân đường vuông góc hạ từ F xuống các đường thẳng AB và AC.
c) Tính độ dài cạnh BC và bán kính đường tròn ngoại tiếp tam giác ABC theo b, c.
Cho tam giác ABC cân tại A có AB = AC = 10(cm) và BC = 12(cm). Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. Đường thẳng AO cắt BC tại H và cắt đường tròn (O) tại điểm thứ hai là D khác A. Tính độ dài đoạn thẳng AD
Cho(O;3cm), ddiemr A nằm ngoài đường tròn. Kẻ các tiếp tuyến AB và AC( b và C là các tiếp điểm). BIế góc BAC =60\(^0\)
a) chứng minh tam giác ABC là tam giác đều
b) Tính độ dài OA
c) tia BO cắt đường tròn (O) tại D . tứ giác ODCA là hình gì ? Vì sao ?
d) tính diện tích tứ giác ODCA