Cho tam giác đều ABC có cạnh bằng 6cm. Một điểm M nằm trên cạnh BC sao cho BM = 2cm.
a, Tính độ dài của đoạn thẳng AM và tính côsin của góc BAM ;
b, Tính bán kính đường tròn ngoại tiếp tam giác ABM;
c, Tính độ dài đường trung tuyến vẽ từ đỉnh C của tam giác ACM;
d, Tính diện tích tam giác ABM.
Cho tam giác ABC có AB =5a, BC=8a, góc ABC=60 , gọi M là trung điểm của BC. Tính theo a độ dài đoạn AM và bán kính đường tròn ngoại tiếp tam giác ABC.
Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC
Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.
Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.
Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC
Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.
Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.
Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC
Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.
Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.
Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.
Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC
Cho tam giác 𝐴𝐵𝐶: 𝐴𝐵 = 35, 𝐴𝐶 = 20, góc 𝐴 = 60 độ . a) Tính chiều cao kẻ từ đỉnh 𝐴 của tam giác 𝐴𝐵𝐶. b) Tính 𝐵𝐶. c) Kẻ đường kính 𝐵𝐷 của đường tròn ngoại tiếp tam giác 𝐴𝐵𝐶. Tính góc 𝐵𝐷𝐶 , BD và suy ra bán kính đường tròn ngoại tiếp tam giác 𝐴𝐵𝐶.
Cho tam giác ABC có a = 12, b = 16, c = 20. Tính diện tích S của tam giác, chiều cao ha, bán kính R, r của các đường tròn ngoại tiếp, nội tiếp tam giác và đường trung tuyến ma của tam giác
Cho tam giác ABC có a,b,c,ma,mb,mc,R lần lượt là độ dài các cạnh BC,CA,AB, độ dài các đường trung tuyến kẻ từ A,B,C và bán kính đường tròn ngoại tiếp tam giác. Biết rằng: \(\frac{a^2+b^2}{mc}+\frac{b^2+c^2}{ma}+\frac{c^2+a^2}{mb}=12R\). Chứng minh rằng tam giác ABC đều
Cho tam giác ABC cân đỉnh A, ^A=α, AB=m, D là một điểm trên cạnh BC sao cho BC=3BD
a) Tính BC, AD
b) Chứng tỏ rằng đường tròn ngoại tiếp các tam giác ABD, ACD là bằng nhau. Tính cosα để bán kính chúng bằng 1/2 bán kính R của đường tròn ngoại tiếp tam giác ABC
Tam giác ABC có AB =3; AC = 6 và A ^ = 60 ° . Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
A. R = 3
B. R = 3 3 .
C. R = 3 .
D. R = 6.
Cho tam giác ABC có góc A = 75°, góc B = 60°, c = 10cm. Tính cạnh b, bán kính đường tròn ngoại tiếp R và đường cao hà của tam giác ABC.
Mn giúp mình với ạ. Mình cảm ơn lắm