a: Xét ΔABC có DE//BC
nên \(\dfrac{DE}{BC}=\dfrac{AD}{AB}\)
=>\(\dfrac{DE}{8}=\dfrac{2}{5}\)
=>\(DE=8\cdot\dfrac{2}{5}=\dfrac{16}{5}=3,2\left(cm\right)\)
b: Xét tứ giác BDFC có
BD//FC
DF//BC
Do đó: BDFC là hình bình hành
=>DF=BC=8cm
Ta có: DE+EF=DF
=>EF+3,2=8
=>EF=4,8(cm)
Xét ΔIEF và ΔICB có
\(\widehat{IEF}=\widehat{ICB}\)(hai góc so le trong, EF//BC)
\(\widehat{EIF}=\widehat{CIB}\)(hai góc đối đỉnh)
Do đó: ΔIEF đồng dạng với ΔICB
=>\(\dfrac{IF}{IB}=\dfrac{EF}{CB}=\dfrac{3}{5}\)
Đúng 0
Bình luận (0)