cho tam giác ABC có 3 góc nhọn, các đường cao AD,BE,CF cắt nhau tại H. Gọi M là trung điểm BC. Đường thẳng vuông góc HM tại H lần lượt cắt AB và AC tại P và Q. Chứng minh: H là trung điểm PQ
Cho tam giác ABC nhọn (AB < AC). Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại F. Gọi K,L, R lần lượt là chân đường vuông góc kẻ từ N đến AC, AD, BC. Gọi giao điểm của DM và CN là S. CMR:
1. Ba điểm K, L, R thẳng hàng
2. HN.CS = NC.SH
3. Tia phân giác của góc BAC cắt BC tại I, kẻ đường thẳng đi qua C và vuông góc với đường thẳng AI tại P, đường thẳng CP cắt đường thẳng AO tại Q. Gọi G là trung điểm của đoạn thẳng IQ. CMR: đường thẳng PG đi qua trung điểm của đoạn thẳng AC
Cho tam giác ABC nhọn với 3 đường cao AD,BE,CF cắt nhau tại H. Gọi M là trung điểm của BC và K đối xứng với H qua M.
a. BHCK là hình gì?
b. Gọi O và I lần lượt là trung điểm của AK và AH, chứng minh IM là trung trực của FE , từ đó suy ra AK vuông góc với FE?
c. Qua O kẻ đường thẳng song song với BC cắt AC tại T. Chứng minh rằng góc BIT vuông?
Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.
Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.
Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.
Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.
Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .
Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.
Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .
Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé.
Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi M, N, P, Q, I, K lần lượt là trung điểm của các đoạn thẳng BC, CA, AB, EF, FD, DE. Chứng minh MQ, NI, PK đồng quy tại 1 điểm.
Cho tam giác nhọn ABC có ba đường cao AD, BE,CF cắt nhau tại H. Gọi M, N, P, Q, R, S lần lượt là trung điểm các đoạn thẳng BC, CA, AB, HA, HB, HC. Các đường trung trực của tam giác ABC cắt nhau tại O.
a) BHCK, AQMO là hình gì?
b) Chứng minh PQRS, MNQR, NPRS là hình chữ nhật
c) Chứng minh MQ, OH, RN đồng quy tại 1 điểm.
Cho tam giác nhọ ABC, các đường cao BE,CF cắt nhau tại H. Gọi M là trung điểm BC. Đường thẳng vuông góc với HM tại H cắt AB và AC
theo thứ tự P và Q.Chứng minh rằng
a)Tam giác AHP đồng dạng với tam giác CMH
b) H là trung điểm PQ
c) Trên các đoạn HB, HC lần lượt lấy các điểm I,K tùy ý sao cho HI=CK. Chứng minh đường trung trực của đoạn thẳng IK luôn đi qua 1 điểm cố định
cho tam giác ABC nhọn, các đường cao AD,BE,CF cắt nhau tại H, từ H hạ HM vuông góc với EF tại M và HN vuông góc với ED tại N. gọi I;J;Q;K lần lượt là hình chiếu của F trên AC, AD, BE, BC. chứng minh I;J;Q;K thẳng hàng.
Cho tam giác nhọn ABC có ba đường cao AD,BE và CF cắt nhau tại H.
a) Chứng minh: Tam giác ABE đồng dạng với tám giác ACF, từ đó suy ra : AB.AF = AC.AE
b) Chứng minh: DB.DC = DA.DH
c) Gọi I là trung điểm của BC. Đường thẳng vuông góc với IH tại H cắt AB và AC lần lượt tại M và N. Chứng minh: Tam giác AHN đồng dạng với tam giác BIH và H là trung điểm của MN.