\(a,\) Vì \(\widehat{BEC}=\widehat{BFC}=90^0\) nên BFEC nội tiếp
Do đó B,C,E,F cùng thuộc 1 đường tròn
\(b,\) H là điểm nào?
\(a,\) Vì \(\widehat{BEC}=\widehat{BFC}=90^0\) nên BFEC nội tiếp
Do đó B,C,E,F cùng thuộc 1 đường tròn
\(b,\) H là điểm nào?
Cho tam giác ABC nhọn nội tiếp (O; R). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H. Kẻ đường kính AK của (O). Gọi I là trung điểm BC
a) CMR: B, C, E, F cùng thuộc 1 đường tròn
b) CMR: BHCK là hình bình hành.
BE.BH + CF.CH = 4IE^2
c) Giả sử góc BAC = 60°. CMR: Tam giác OAH cân
*Note: e chx học tứ giác nội tiếp nên ko cm dựa vào tgnt ạ
Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O. Đường cao BE, CF cắt nhau tại H a) chứng minh bốn điểm B, F, E, C cùng thuộc đường tròn b) kẻ đường kính AA' của đường tròn tâm O. Chứng minh tứ giác BHCA' là hình bình hành
cho tam giác abc có 3 góc nhọn nội tiếp đường tròn tâm O. các đường cao be,cf cắt nhau tại h.
a. Cm 4 điểm b,f,e,c thuộc cùng một đường tròn.
b. kẻ đường cao aa' của đường tròn tâm o. cm tứ giác bhca' là hình bình hành
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O, các đường cao BE, CF cắt nhau tại H
a) Chứng minh rằng: 4 điểm B, F, E, C thuộc cùng một đường cao
b) Kẻ đường kính AA' của đường tròn tâm O. Chứng minh: tứ giác BHCA' là hình bình hành
c) Chứng minh: 4 điểm A, F, H, E cùng thuộc một đường tròn
Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn tâm O và AB<AC. Vẽ đường kính AD của đường tròn (O). Kẻ BE và CF vuông góc với AD( E,F thuộc AD). Kẻ AH vuông góc với AC(H thuộc BC).
a) Chứng minh 4 điểm A,B,H,E cùng nằm trên một đường tròn và tam giác ABH đồng dạng với tam giác ADC.
b) Chứng minh HE // CD
c) Gọi M là trung điểm của BC. Chuwngd minh ME=MF.
Vẽ 1 tam giác nhọn có 3 góc nhọn nội tiếp đường tròn. Vẽ đường cao BE và CF. Kẻ đường kính AK. C/m F,E,B,C cùng thuộc
1/ Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) H là giao điểm 2 đường cao BD,CE của tam giác ABC
a) Chứng minh tứ giác BCDE nội tiếp. Xác định tâm đường tròn
b) F là giao điểm AH,BC. Vẽ đường kính AK của đường tròn (O). Chứng minh góc AFB=góc ACK
c) Chứng minh tứ giác BHCK là hình bình hành và H,I,K thẳng hàng
bài 1: Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). các đường cao BM và CN cắt nhau tại H.
a) Chứng minh 4 điểm B,M,N,C cùng thuộc 1 đường tròn.
b) Vẽ đường kính AD của đường tròn (o). chứng minh tứ giác BHCD là hình bình hành.
Cho tam giác ABC nhọn nội tiếp đường tròn (O; R), Ba đường cao AD, BE, CF của tam giác ABC cùng đi qua trực tâm 11. Kẻ đường kính AK của đường tròn (O; R). Gọi M là hình chiếu vuông góc của C trên AK. 1) Chứng minh tứ giác BFEC nội tiếp được đường tròn. 2) Chứng minh AB. AC = 2RAD và MD || BK. 3) Giả sử BC là dây cung cố định của đường tròn (O; R) và A di động trên cung lớn BC. Tìm vị trí điểm A để diện tích tam giác AEH lớn nhất Bài V(0,5 điểm):