Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn O. Các đường cao AD,BE,CF cắt nhau tại H.Gọi I là trung điểm của BC.Nối A với I cắt OH tại G
a) tg BCEF nội tiếp
b) Tính EF nếu BÂC =60 độ và BC=20cm
c) C/m G là trọng tâm tam giác ABC
d) c/m rằng khi A chuyển động trên cung lớn BC sao cho tam giác BAC có 2 góc nhọn thì đường tòn ngoại tiếp tam giác DEF luôn đi qua 1 điểm cố định
a: góc BEC=góc BFC=90 độ
=>BCEF nội tiếp
b: Xét ΔAFE và ΔACB có
góc AFE=góc ACB
góc A chung
=>ΔAFE đồng dạng với ΔACB
=>\(\dfrac{EF}{BC}=\dfrac{AE}{AB}=cos60=\dfrac{1}{2}\)
=>EF=10cm