a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AB/AE=AC/AF và AB*AF=AC*AE
b: Xét ΔABC và ΔAEF có
AB/AE=AC/AF
góc BAC chung
=>ΔABC đồng dạng với ΔAEF
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AB/AE=AC/AF và AB*AF=AC*AE
b: Xét ΔABC và ΔAEF có
AB/AE=AC/AF
góc BAC chung
=>ΔABC đồng dạng với ΔAEF
Cho tam giác ABC nhọn (AB nhỏ hơn AC) có hai đường cao BE,CF cắt nhau tại H. Chứng minh tam giác ABC đồng dạng với tam giác AFC, chứng minh AE . AC = AF . AB và tam giác AEF đồng dạng với tam giác ABC, từ E vẽ AK vuông góc với AB tại K và N vuông góc với AC tại N chứng minh EK.EC= EF.EN và góc KNE bằng góc ECF
Giúp mình bài này với ạ !
Cho tam giác nhọn ABC ( AB < AC ) . Ba đường cao AD, BE, CF cắt nhau tại H, AH cắt EF tại I.
a) Chứng minh tam giác ABE và tam giác ACF đồng dạng , tam giác AEF và tam giác ABC đồng dạng.
b) Vẽ FK vuông góc với BC tại K. Chứng minh AC. AE = AH. AD và CH. DK = CD . HF
c) Chứng minh \(\dfrac{EI}{ED}=\dfrac{HI}{HD}\)
d) Gọi M và N lần lượt là trung điểm của đoạn AF và đoạn CD.Chứng minh góc BME = góc BNE = 180 độ.
Cho tam giác ABC có 3 góc nhọn (AB<AC). Vẽ hai đường cao BE, CF
a, Chứng minh: tam giác ABE và tam giác ACF đồng dạng
tam giác AEF và tam giác ABC đồng dạng
b, Đường thẳng EF và CB cắt nhau tại. Chứng minh:IB*IC=IE*IF
c, Biết AE = 3cm, BE = 4cm, BC = 5cm.Tính diện tích tam giác AEF
Cho tam giác ABC nhọn(AB<AC) có 3 đường cao AD,BE,CF cắt nhau tại H
a)Chứng minh tam giác ABE và tam giác ACF đồng dạng với nhau
b)Chứng minh DB.BC=Ab.BF
c)Chứng minh góc AFE=góc ACB
Cho tam giác nhọn ABC có AB < AC. Ba đường cao AD, BE và CF cắt nhau tại H. AH cắt EF tại I.
a/ Chứng minh tam giác ABE và ACF đồng dạng, tam giác AEF và ABC đồng dạng.
b/ Vẽ FK vuông góc BC tại K. Chứng minh AC.AE = AH.AD và CH.DK = CD.HF.
c/ Chứng minh EI/ED = HI/HD.
d/ Gọi M, N lần lượt là trung điểm của AF và CD. Chứng minh tổng các góc BME và BNE bằng 180o.
Cho AABC có 3 góc nhọn (AB < AC), ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh: tam giác ABE đồng dạng tam giác ACF và AC.AE = AB.AF b) Chứng minh: tam giác BDF đồng dạng tam giác BAC và góc BFD = góc BCA
Cho tam giác nhọn ABC có ba đường cao AD,BE và CF cắt nhau tại H.
a) Chứng minh: Tam giác ABE đồng dạng với tám giác ACF, từ đó suy ra : AB.AF = AC.AE
b) Chứng minh: DB.DC = DA.DH
c) Gọi I là trung điểm của BC. Đường thẳng vuông góc với IH tại H cắt AB và AC lần lượt tại M và N. Chứng minh: Tam giác AHN đồng dạng với tam giác BIH và H là trung điểm của MN.
Bài V:
Cho tam giác nhọn ABC có AB < AC. Ba đường cao AD, BE, CF cắt nhau tại H; AH cắt EF tại I.
a) Chứng minh: D ABE và D ACF đồng dạng; D AEF và D ABC đồng dạng.
b) Vẽ FK ^ BC tại K. Chứng minh: AC.AE = AH.AD và CH.DK = CD.HF.
c) Chứng minh: . EI/ED = HI/HD
d) Gọi M và N lần lượt là trung điểm của đoạn AF và đoạn CD.
Chứng minh: góc BME + góc BNE = 180o
Cho tam giác ABC nhọn (AB < AC), 3 đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh: tam giác ABE đồng dạng ACF từ đó suy ra AB.AF=AC.AE
b) Chứng minh: AFE = ACB
c) Đường thẳng EF cắt AD và tia CB lần lượt tại I và K. Chứng minh: KF. IE = KE . IF
Mong các bạn giúp mình :D