cho tam ABC có 3 cạnh a,b,c thỏa mãn a+b+c=6.
CMR\(52\le3\left(a^2+b^2+c^2\right)+2abc< 54\)
Cho a,b,c là 3 cạnh tam giác a+b+c=6
CMR: 52 < hoặc bằng \(3\left(a^2+b^2+c^2\right)+2abc\)<54
1.Cho a,b,c là ba cạnh của một tam giác. CMR:
\(1.a^3+b^3+c^3+2abc< a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right) \)
\(2.\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\le abc\)
cho a,b,c là độ dài 3 cạnh của 1 tam giác thoả mãn:
a+b+c=2
CMR: a2 + b2+ c2+ 2abc < 2
cho a ,b,c là 3 cạnh của tam giác
a, cmr nếu a+b+c =2 thì
\(a^2+b^2+c^2+2abc< 2\)
b, cm
\(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)
ho a,b,c là độ dài 3 cạnh của 1 tam giác thoả mãn:
a+b+c=2
CMR: a2 + b2+ c2+ 2abc < 2
cho a,b,c là độ dài 3 cạnh tam giác. chứng minh a, abc>= ( a+b-c)(b+c-a)(c+a-b)
b,\(a^3+b^3+c^3+2abc< a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)
Cho a, b, c là các số dương thỏa mãn điều kiện a+b+c+\(\sqrt{2abc}=2\)
CMR \(\sqrt{a\left(2-b\right)\left(2-c\right)}+\sqrt{b\left(2-c\right)\left(2-a\right)}+\sqrt{c\left(2-a\right)\left(2-b\right)}=\sqrt{8}+\sqrt{abc}\)
giúp mik vs nhé cảm ơn rất nhìu
cho a,b,c>0 thỏa mãn a+b+c=3. chứng minh rằng: \(\left(abc\right)^2\left(a^2+b^2+c^2\right)\le3\)