Sửa đề: Chứng minh MN//AC
Ta có: AN là phân giác của góc BAC
=>\(\widehat{BAN}=\dfrac{1}{2}\cdot\widehat{BAC}\left(1\right)\)
CM là phân giác của góc BCA
=>\(\widehat{BCM}=\dfrac{1}{2}\cdot\widehat{BCA}\left(2\right)\)
ΔBAC cân tại B
=>\(\widehat{BAC}=\widehat{BCA}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{BAN}=\widehat{BCM}\)
Xét ΔBAN và ΔBCM có
\(\widehat{BAN}=\widehat{BCM}\)
BA=BC
\(\widehat{ABN}\) chung
Do đó: ΔBAN=ΔBCM
=>BN=BM
Xét ΔBAC có \(\dfrac{BM}{BA}=\dfrac{BN}{BC}\)
nên MN//AC