a: Xét ΔABC có
H là trung điểm của AC
I là trung điểm của BC
Do đó: HI là đường trung bình của ΔBAC
Suy ra: HI//AB
hay HK//AB
Xét tứ giác ABKH có
HK//AB
BK//AH
Do đó: ABKH là hình bình hành
a: Xét ΔABC có
H là trung điểm của AC
I là trung điểm của BC
Do đó: HI là đường trung bình của ΔBAC
Suy ra: HI//AB
hay HK//AB
Xét tứ giác ABKH có
HK//AB
BK//AH
Do đó: ABKH là hình bình hành
cho tam giác abc cân tại a gọi d e lần lượt là trung điểm của ab bc và ac. Trên tia đối của FC lấy điểm h sao cho f là trung điểm của ch. Các đường thẳng de và ah cắt nhau tại i. cm aidb là hình bình hành cm bhid là hình thang cân
Cho tam giác ABC nhọn (AB<AC). Gọi M và N lần lượt là trung điểm của AB, AC.
a. Chứng minh tứ giác BMNC là hình thang
b. Qua M vẽ đường thẳng song song với AC cắt BC tại F. Chứng minh tứ giác MNCE là hình bình hành
c. Đường cao AH của tam giác ABC cắt MN tại điểm I. Gọi F là trung điểm của BH. Chứng minh: tứ giác AIFM là hình bình hành.
Cho tam giác ABC vuông tại A (AB>AC). Gọi M là trung điểm của BC. Trên tia đối tia MA lấy điểm D sao cho MD=MA.
A) chứng minh tứ giác ABDC là hình chữ nhật
B) gọi E là điểm đối xứng của qua A. Chứng minh tứ giác ADBE là hình bình hành.
C) EM cắt AB tại K và cắt CD tại I. Vẽ IH vuông góc với AB(H thuộc AB). Chứng minh tam giác IKB cân
Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!
Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.
a) CM: OEFC là hình thang
b) CM: OEIC là hình bình hành.
c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật.
d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu này)
Bài 2: Cho tam giác ABC vuông tại A (AB>AC). Đường cao AH, gọi M là trung điểm AC. Trên tia đối của tia MH lấy điểm D sao cho MD=MH.
a) CM: ADCH là hình chữ nhật.
b) Gọi E là điểm đối xứng với C qua H. CM: ADHE là hình bình hành.
c) Vẽ EK vuông góc với AB tại K. I là trung điểm AK. CM: KE // IH.
d) Gọi N là trung điểm BE. CM: HK vuông góc với KN. (nhờ mọi người làm giúp câu này)
Bài 3: Cho tam giác ABC nhọn, AH là đường cao. Qua A vẽ đường thẳng vuông góc với AH và qua B vẽ đường thẳng vuông góc với BC, hai đường này cắt nhau tại E.
a) Vẽ đường cao BK của tam giác ABC cắt AH tại N. Gọi F là điểm đối xứng của B qua K mà M là điểm đối xứng của A qua K. CM ABMF là hình thoi.
b) Gọi D và I lần lượt là trung điểm của AC và BC. hai đường trung trực của AC và BC cắt nhau tại O. Gọi L là điểm đối xứng với A qua O. CM: LC // BN.
c) CM: N, I, L thẳng hàng. (nhờ mọi người làm giúp câu này)
Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
Cho tam giác ABC có 3 góc nhọn (AB<AC). Gọi M;N;K lần lượt là trung điểm của AB;BC;AC
a) Chứng minh tứ giác AMNC là hình bình hành
b) Vẽ đường cao AH của tam giác ABC. Gọi I là điểm đối xứng với H qua M. Chứng minh AB=IH và AI song song với HC
c) Tứ giác MKNH là hình gì ? Vì sao ?
d) AH và IC lần lượt cắt MK tại E và F. Chứng minh HC-HB=2EF
. Cho tam giác ABC vuông tại A (AB < AC). Gọi D, E, F lần lượt là trung điểm các cạnh AB, BC, AC củatam giác ABC. a) Chứng minh: Tử giác BDFE là hình bình hành và AE = DF. b) Kẻ AH vuông góc BC (H thuộc BC). Chứng minh: DHEF là hình thang cân. c) Lấy điểm I đối xứng với E qua F, K đối xứng với B qua F. Chứng minh: A, I, K thẳng hàng.
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
NHỜ 500 AE GIÚP MỀNH ZS .... NGÀY MAI PHẢI NỘP OY
1. Cho tam giác ABC cân tại A có góc B=60 độ, đường cao AM. Trên tia đối của tia MA lấy điểm E sao cho ME=MAa) CM: Tứ giác ABEC là hình thoi và tính số đo góc BEC
b) Hai điểm D,E đối xứng nhau qua điểm C. Đường thẳng qua E song song với BC cắt AC tại F. Tứ giác ADFE là hình gì?Vì sao?
c) CM: Tứ giác ABEF là hình thang cân
d) Điểm C có là trực tâm của tam giác DBF không ? Giải thích?
2. Cho tam giác ABC(AB<AC), đoạn AI là đường cao và ba điểm D,E,F theo thứ tự là trung điểm của các đoạn thẳng AB,AC,BC.a) CM: Tứ giác BDEF là hình bình hànhb) Điểm J là điểm dối xứng của điểm I qua điểm E. Tứ giác AICJ là hình gì? Vì sao?
b) Điểm J là điểm đối xứng của diểm I qua điểm E. Tứ giác AICJ là hình gì? Vì sao?
c) Hai đường thẳng BE,DF cắt nhau tại K. CM : Hai tứ giác ADKE và KECF có diện tích bằng nhau
d) Tính diện tích tam giác ADE theo diện tích tam giác ABC
3. Cho tam giác ABC cân tại A, trung tuyến AM. Gọi D là điểm đối xứng của A qua M. Gọi K là trung điểm của MC, E là điểm đối xứng của D qua K.a) CM: Tứ giác ABDC là hình thoi
b) CM: Tứ giác AMCE là hình chữ nhật
c) AM và BE cắt nhau tại I. CM : I là trung điểm của BE
d) CM: AK,CI,EM đồng quy
4. Cho hình chữ nhật ABCD(AB>AD), trên cạnh AD, BC lần lượt lấy các điểm M,N sao cho AM=CN.a) CMR: BM song song với DN
b) Gọi O là trung điểm của BD. CMR: AC,BD,MN đồng quy tại O
c) Qua O vẽ đường thẳng d vuông góc với BD, d cắt AB tại P, cắt CD tại Q. CMR : PBQD là hinh thoi
d) Đường thẳng qua B song song với PQ và đường thẳng qua Q song song với BD cắt nhau tại K. CMR : AC vuông góc với CK.
5. Cho tam giác ABC cân tại Acó M là trung điểm của cạnh BC . Gọi D là điểm đối xứng với A qua M.a) CM : Tứ giác ABDC là hình thoi
b) Vẽ đường thẳng vuông góc với BC tại B cắt tia CA tại điểm F. CM: Tứ giác ADBF là hình bình hành
c) Qua C vẽ đường thẳng song song với AD cắt tia BA tại điểm E. CM: Tứ giác BCEF là hình chữ nhật
d) Nối EM cắt AC tại N, kéo dài BN cắt EC tại I. CM: SIBC = 1/4 SBCEF
6. Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo . Lấy một điểm E nằm giữa hai điểm O và B. Gọi F là điểm đối xứng với điểm A qua E và I là trung điểm của CF.a) CM: Tứ giác OEFC là hình thang và tứ giác OEIC là hình bình hành
b) Gọi H và K lần lượt là hình chiếu của điểm F trên các đường thẳng BC và CD. CM: Tứ giác CHFK là hình chữ nhật và I là trung điểm của HK
c) CM: ba điểm E,H,K thẳng hàng