Sửa đề: ΔABC cân tại B
a: Xét ΔABC có
\(\dfrac{AD}{AB}=\dfrac{CE}{CB}\)
Do đó: DE//AC
Xét tứ giác ADEC có DE//AC
nên ADEC là hình thang
mà \(\widehat{A}=\widehat{C}\)
nên ADEC là hình thang cân
Sửa đề: ΔABC cân tại B
a: Xét ΔABC có
\(\dfrac{AD}{AB}=\dfrac{CE}{CB}\)
Do đó: DE//AC
Xét tứ giác ADEC có DE//AC
nên ADEC là hình thang
mà \(\widehat{A}=\widehat{C}\)
nên ADEC là hình thang cân
Cho tam giác ABC cân tại A . Gọi D,E,F lần lượt là trung điểm của BC,AB,AC. Lấy điểm G đối xứng của điểm D qua F
a) Chứng minh tứ giác ABDF là hình thang , tứ giác BEFC là hình thang cân
b) Chứng minh tứ giác ABDG là hình bình hành
c) Chứng minh tứ giác AFDE là hình thoi
d) Chứng minh tứ giác ADCG là hình chữ nhật
Gọi H,K lần lượt là trung điểm BE,CF. Cho HK=12cm , AD=15cm. Tính độ dài đoạn thẳng BD và chu vi hình thang BEFC.
Cho ∆ ABC cân tại A. Đường cao AD. Gọi M, N , D lần lượt là trung điểm AB, AC, BC. Trên tia đối tia ND lấy E sao cho N là trung điểm DE. Chứng minh :
a) Tứ giác MNCB là hình thang cân
b) Tứ giác BAED là hình bình hành
c) Tứ giác ADCE là hình chữ nhật
d) Tứ giác AMDN là hình thoi.
Cho ▲ABC cân tại A trên cạnh AB, AC lần lượt lấy 2 điểm D, E sao cho AD=AE.
a/ Chứng minh tứ giác BDEC là hình thang cân
b/ Cho góc A = 60 độ, tính các góc của hình thang cân BDEC
Giúp mình với,giải chi tiết cho mình nha!
Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF
a. CM: AK = KC.
b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF
Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.
a. CM: Tứ giác ADME là hình bình hành.
b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?
c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?
d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.
Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.
a. Chứng minh AE vuông góc BF
b. Chứng minh tứ giác BFDC là hình thang cân.
c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.
d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED
1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.
2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.
3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN
4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.
5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3
Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang
Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:
a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông
Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB
Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF
Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:
a) AE vuông góc với DB
b) AD // BE và AD = BE
c) E là trung điểm của DC
d) Xác định dạng của tứ giác BCEO
e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD
Cho tam giác ABC cân đỉnh A. Trên cạnh AB, BC lần lượt lấy hai điểm D, E sao cho AD = AE.
Chứng minh : tứ giác BCDE là hình thang cân.
Cho tam giác abc cân tại A. Gọi D, E, F lần lượt là trung điểm của BC, AB, AC. Lấy điểm G đối xứng của điểm D qua F.
chứng minh tứ giác ABDF là hình thang, tứ giác BEFC là hình thang cân.
Cho tam giác ABC cân tại A. Gọi D,E,H lần lượt là trung điểm của AB, AC, BC.
a) Tính độ dài đoạn thẳng DE khi BC=20cm.
b) Chứng minh: tứ giác DECH là hình bình hành.
c) Gọi F là điểm đối xứng của H qua E. Chứng minh: tứ giác AHCF là hình chữ nhật.
d) Gọi M là giao điểm của DF và AE; gọi N là giao điểm của DC và HE. Chứng minh NM vuông góc với DE.