Sửa đề: M là trung điểm của BC
a: ΔABC cân tại A có AM là trung tuyến
nên AM là phân giác của góc BAC
b: Xét ΔABC có
AM,BD,CE là các đường phân giác
=>AM,BD,CE đồng quy tại H
Sửa đề: M là trung điểm của BC
a: ΔABC cân tại A có AM là trung tuyến
nên AM là phân giác của góc BAC
b: Xét ΔABC có
AM,BD,CE là các đường phân giác
=>AM,BD,CE đồng quy tại H
Cho tam giác ABC cân tại A. Kẻ các tia phân giác BD, CE. Lấy M là trung điểm của BC.
a) Chứng minh AM là tia phân giác của góc BAC.
b) Ba đường thẳng AM, BD, CE đồng quy tại H.
Cho tam giác ABC có đường trung tuyến AM, gọi G là trọng tâm tam giác, trên tia AM lấy điểm D sao cho G là trung điểm của AD.
a)CM MG=MD và BD=CG.
b)Kẻ đường thẳng qua M vuông góc với BC lần lượt cắt GC, BD tại E, F. CM CE=BF.
1. Cho tam giác ABC cân tại A. Trên tia đốicủa tia BC và CB lấy theo thứ tự điểm D và E sao cho BD = CE.
a) CMR: tam giác ADE cân.
b) Gọi M là trung điểm của BC. CMR: AM là tia phân giác của góc DAE và AM vuông góc với DE.
c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH = CK.
d_CMR: HK// BC
e) Cho HD cắt Ck ở N. CMR: A, M, R thẳng hàng.
2. Cho tam giác ABC vuông cân tại A. d là dduowgnf thẳng bất ì qua A (d không cắt đoạn BC). Từ B và C kẻ BD và CE cùng vuông góc với d.
a) CMR: BD // CE.
b) CMR: tam giác ADB = tam giác CEA.
c) CMR: bd + CE = DE.
d) Gọi M là trung điểm của BC. CMR: tam giác DAM = tam gaics ECM và tam giác DME vuông cân.
Cho tam giác ABC cân tại A. Vẽ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE.
a. C/m BD = CE
b. Trên tia CE và tia BD lấy điểm M và N sao cho E là trung điểm của HD, D là trung điểm của HN. C/m AM = AH
c. C/m tam giác AMN cân
Cho tam giác ABC cân tại A.Trên tia đối của các tia BC và CB tương ứng lấy 2 điểm D và E sao cho BD=CE. Gọi M là trung điểm của BC. Từ B và C kẻ BH vuông góc AD, CK vuông góc AE (H thuộc AD, K thuộc AE). Chứng minh 3 đường thẳng BH,CK,AM đồng quy.
Cho tam giác ABC cân tại A,trên tia đối của tia CB lấy E và trên BC lấy D sao cho BD=CE.
a) Chứng minh tam giác ADE cân.
b) Kẻ BH vuông góc AD tại H,CK vuông góc AE tại K.Chứng minh BH=CK và HK//BC.
c) Gọi O là giao điểm của BH và CK. Tam giác DBC là tam giác gì,tại sao?
d) Gọi M là trung điểm của DC.Chứng minh AM,BH,CK đồng quy.
Cho tam giác ABC cân tại A, kẻ BD vuông góc với ACh(D thuộc AC). Kẻ vuông góc với AB tại E,gọi I là giao điểm của BD và CE chứng minh
A, BD=CE
B, tam giác BIC cân
C, AI là tia phân giác của góc BAC
D, DE//BC
E, gọi H là trung điểm của BC. Chứng minh A,I,H thẳng hàng
F,chứng minh AI vuông góc với BC
(^-^'')
CẦN GIẢI GẤP ĐỐNG BÀI NÀY
(Có cả hình ở mỗi bài nha!)
Câu 1: Cho tam giác ABC có AB = AC. Kẻ BD vuông góc với AC (D∈AC),CE vuông góc với AB ( E ∈ AB ). Gọi O là giao điểm của BD và CE. Chứng minh :
a) BD = CE
b) Tam giác OEB bằng tam giác ODC
c) AO là tia phân giác của góc BAC
d) Gọi M là trung điểm của BC. Chứng minh : A,O,M thẳng hàng.
Câu 2 :
Câu 3 :Cho tam giác ABC có AC>AB. Nối A với trung điểm M của BC. Trên tia AM lấy điểm E sao cho M là trung điểm của AE, Nối C với E.
a) So sánh AB và CE
b) Chứng minh : \(\frac{AC-AB}{2}< AM< \frac{AC+AB}{2}.\)
Câu 4: Cho ∆ABC vuông tại C có góc A = 60o. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK ⊥ AB( K ∈ AB ).Kẻ BD ⊥ AE( D ∈ AE ). Chứng minh:
a) AC=AK và AE ⊥ CK
b) KA=KB
c) EB>AC
d) Ba đường thẳng AC,BD,KE đồng quy.
Câu 5: Cho ∆ABC có AB<AC. Trên cạnh AC lấy điểm D sao cho CD=AB. Hai đường trung trực của BD và AC cắt nhau tại E. Chứng minh rằng:
a)∆AEB = ∆CED
b) AE là tia phân giác trong tại đỉnh A của ∆ABC