Xét ΔADE và ΔACB có
AD/AC=AE/AB
góc DAE=góc CAB
Do đó; ΔADE đồng dạng với ΔACB
Suy ra: góc ADE=góc ACB
=>DE//BC
=>BDEC là hình thang
mà BE=CD
nên BDEC là hình thang cân
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Xét ΔADE và ΔACB có
AD/AC=AE/AB
góc DAE=góc CAB
Do đó; ΔADE đồng dạng với ΔACB
Suy ra: góc ADE=góc ACB
=>DE//BC
=>BDEC là hình thang
mà BE=CD
nên BDEC là hình thang cân
Cho tam giác ABC cân tại A . Trên tí đối tia AC lấy D . Tia đối AB lấy E sao cho AD= AE . Tứ giác DECB là hình gì ?
cho tam giác ABCD cân tại A . Trên tia đối của tia AC lấy điểm D , trên tia đối của tia AB lấy điểm E sao cho AD=AE . Tứ giác DECB là hình gì ? vì sao ?
Cho tam giác ABC cân tại A. Trên tia đối của AC lấy D,trên tia đối của AC lấy E sao cho AD=AE. Tứ giác DECB là hình gì? Vì sao
cho tam giác abc cân tại A trên tia đối tia AC lấy điểm D, trên tia đối tia AB lấy điểm E sao cho AD = AE
Tứ giác DECB là hình gì ? Vì sao ?
giúp mik nhanh đi
Cho tam giác ABC cân tại A. Lấy điểm D thuộc tia đối của tia AB, lấy điểm E thuộc tia đối của tia AC sao cho AE = AD. Xác định dạng của tứ giác BEDC ??
Giúp mình với mọi người ơi !!!!
cho tam giác ABC cân tại A. Trên tia đối của tia AB lấy điểm D sao cho: AD=AB, trên tia đối của tia AC lấy điểm E sao cho: AE=AC. Chứng minh rằng BCDE là hình chữ nhật
Cho tam giác ABC D thuộc tia đối của AC E thuộc tia đối của AB sao cho AD=AE. Tứ giác DEBC là hình gì
Bài 1
Cho tam giác ABCD cân tại A.Lấy D thuộc tia đối của tia AB ,điểm E thuộc tia đối của tia AC sao cho AD =AE.Hãy xác định giạng của tứ giác BEDC
Tam giác ABC cân tại A, D thuộc AB. Trên tia đối AC lấy E sao cho AE=AD. M,N,I,K là trung điểm của BD,BC,EC và ED. Chứng minh MNIK là hình bình hành? hình vuông?
Giúp mình với mình cần gấp cảm ơn các bạn
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.