a: Xét ΔCED có \(\widehat{ECD}=\widehat{EDC}\left(=\widehat{DCB}\right)\)
nên ΔCED cân tại E
b: Xét ΔABC có DE//BC
nên AD/AE=AB/AC=1
=>AD=AE
Xét ΔABC có CD là đường phân giác
nên AD/AC=DB/BC
=>AE/AB=EC/BC
=>BE là tia phân giác của góc ABC
a: Xét ΔCED có \(\widehat{ECD}=\widehat{EDC}\left(=\widehat{DCB}\right)\)
nên ΔCED cân tại E
b: Xét ΔABC có DE//BC
nên AD/AE=AB/AC=1
=>AD=AE
Xét ΔABC có CD là đường phân giác
nên AD/AC=DB/BC
=>AE/AB=EC/BC
=>BE là tia phân giác của góc ABC
1.cho tam giác ABC có BC=2AB. M là trung điểm của BC, D là trung điểm của BM.TRên tia AD lấy điểm E sao cho AE=2AD. C/m: a, tam giác MAE=tam giác MAC b, AC=2AD
2.cho tam giác ABC đều. D thuộc BC sao cho BC=3BD.Vẽ DE vuông góc với BC(E thuộc AB) DF vuông góc với AC( F thuộc AC). C/m tam giác DEF đều.
3. Cho tam giác ABC cân tại A.D thuộc AB. E thuộc AC sao cho AD=AE. O là giao điểm của BE và CD. C/m
a,BE=CD b, DE song song với BC
Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân
Cho tam giác ABC cân tại A. Trên tia đối của AB lấy điểm D, trên tia đối của tia AC lấy điểm E sao cho AD = AE. Chứng minh:
a) BE = CD
b) DE // BC
c) tam giác BED = tam giác CED
d) Gọi M là trung điểm của BC. Chứng minh rằng AM vuông góc DE
AI GIẢI NHANH VÀ ĐÚNG MIK SẼ TICK
Cho tam giác ABC cân tại A. Trên tia đối của AB lấy điểm D, trên tia đối của tia AC lấy điểm E sao cho AD = AE. Chứng minh:
a) BE = CD
b) DE // BC
c) tam giác BED = tam giác CED
d) Gọi M là trung điểm của BC. Chứng minh rằng AM vuông góc DE
AI GIẢI NHANH VÀ ĐÚNG MIK SẼ TICK
1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là 2 tia phân giác của góc xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC cân tại A, trên tia đối của tia BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB, EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC
Cho tam giác ABC vuông tại A có BE là tia phân giác của góc B ( E thuộc AC). Từ E kẻ ED vuông góc với BC tại D.
a) Chứng minh ΔABE = ΔDBE.
b) Chứng minh BE ⊥ AD
c) Gọi F là giao điểm của tia BA và tia DE. Chứng minh tam giác EFC cân tại E.
Giúp mik với
Bài 1: Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và // với BC cắt AC ở E. Đường thẳng qua E và // với AB cắt BC ở F. CMR:
a) AD = EF
b) Tam giác ADE = tam giác EFC
Bài 2: Cho tam giác ABC, tia phân giác của góc C cắt AB ở D. Trên tia đối của tia CA lấy điểm E sao cho CE = CB.
a) CM CD//EB
b) Tia phân giác của góc E cắt đường thẳng CD tại F. Vẽ CK vuông góc với EF tại K. CM CK là tia phân giác của góc ECF
Bài 3: Cho tam giác ABC cân tại A, trên tia AB lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho CE=BD, DE cắt BC tại I. Trên tia đối của tia BC lấy điểm F sao cho BF=CI. CMR:
a) Tam giác BFD = tam giác CIE
b) Tam giác DFI cân
c) I là trung điểm của DE
giúp mình với nhé!
Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:
a) Tam giác ABC cân ở A
b) O là trọng tâm của tam giác ABC
Bài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:
a) Góc CEB= góc ADC và Góc EBH= góc ACD
b) BE vuông góc BC
C) DF song song BE
Bài 7: Cho tam giác ABC vuông tại A, có AC=12cm, BC-13cm. Gọi I là trung điểm của BC. Trên tia AI lấy điểm K sao cho IA=IK
a) Tính AB
b)Chứng minh rằng: Tam giác IAB= tam giác IKC, từ đó suy ra tam giác ACK là tam giác vuông
c) Gọi điểm M là trung điểm của AC.Chứng minh: MB=MK
d) MK cắt BC tại N,BM cắt AI tại E. Chứng minh: tam giác MEN cân;EN song song BK
Bài 8: Cho tam giác ABC vuông tại A, có AB= 8cm, BC= 17cm
a) Tính AC
b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh: Góc DBC= góc DCB
c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BEC vuông. Suy ra DF là phân giác của góc ADE
d) Chứng minh: BE vuông góc với FC
cho tam giác ABC vuông tại A biết AB=6cm,AC=8cm. a)tính BC b)tia phân giác của góc B cắt cạnh AC tại D kẻ DE vuông góc BC(E thuộc BC) gọi K là giao điểm của tia ED và đường thẳng AB chứng minh tam giác ABD = tam giác EBD c)chứng minh tam giác KDC cân d)kẻ AH vuông góc CK(H thuộc CK) và tia BD cắt CK tại I chứng minh AH song song BI
làm ơn giúp mik với mik đang gấp