câu a là gợi ý cho câu b đó
DBE cân suy ra DB=DE suy ra cungDE=cungDB
ta có: CBE=1/2 sđ cung DE (1)
BAC=1/2 sđ cung BE = 1/2 sđ(cung DB+DE)=1/2.2sđ cung DE=sđ cung DE (2)
từ 1 và 2 suy ra CBE= 1/2BAC
câu a là gợi ý cho câu b đó
DBE cân suy ra DB=DE suy ra cungDE=cungDB
ta có: CBE=1/2 sđ cung DE (1)
BAC=1/2 sđ cung BE = 1/2 sđ(cung DB+DE)=1/2.2sđ cung DE=sđ cung DE (2)
từ 1 và 2 suy ra CBE= 1/2BAC
Cho \(\bigtriangleup ABC\) cân tại A, góc A nhỏ hơn 90 độ. Vẽ đường tròn đường kính AB cắt BC tại D, cắt AC tại E. Chứng minh:
a) \(\bigtriangleup DBE \) cân
b) \(\widehat{CBE}\) = \(\frac{1}{2}\) \(\widehat{BAC}\)
cho tam giác abc nột tiếp (o) ab<ac tia phân giác bac cắt bc tại d và cắt (o) tại m a) chứng minh om vg góc bc. b) tiếp tuyến tại a cắt bc tại s chứng minh tam giác sad cân c) vẽ đường kính mn của (o) cắt ac tại fbvaf bn cắtbam tại e chứng minh ef song song bc
Cho tam giác ABC vuông tại A (AB<AC). Vẽ đường tròn tâm O đường kính AB cắt BC tại H.
a) Chứng minh AH vuông góc BC
b) Gọi I là trung điểm AB. Chứng minh IH là tiếp tuyến (O)
c) Tia phân giác góc HAC cắt BC tại E, cắt (O) tại D. Chứng minh AD * DE = DC2
d) Cho AB = 12, AC = 16. Tính bán kính đường tròn nội tiếp tam giác IAH
GIẢI GIÚP EM CÂU D THÔI Ạ GIÚP EM GẤP
Bài 1:
a/ Cho hình vuông ABCD có cạnh 5cm. Chứng minh rằng: A, B, C, D cùng nằm trên một đường tròn, tính bán kính.
b/ Cho hình chữ nhật ABDE có AB = 8, BD = 6. Chứng minh rằng: A, B, D, E cùng nằm trên một đường tròn, tính bán kính.
Bài 2: Cho tam giác ABC, vẽ đường tròn tâm O đường kính BC. (O) cắt AB, AC lần lượt tại D và E, BE giao CD tại K.
a/ CMR: CD ^ AB, BE ^ AC.
b/ CMR: AK ^ BC.
Bài 3: Cho tam giác ABC vuông ở B, AB = 8cm, BC = 6cm. Gọi D là điểm đối xứng của điểm B qua AC.
a. CMR: 4 điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.
b. Vẽ đường kính BE của đường tròn ngoại tiếp tam giác ABC. Chứng minh tứ giác ACDE là hinh thang cân.
Cho tam giác ABC cân tại A nội tiếp đường tròn (O;R).Vẽ đường kính AOD,M là điểm trên cung AD(M khác A và C),AM cắt đường thẳng BC tại E.
a)CMR AM.AE=AC^2
b)DM cắt BC tại I,AIcắt đường tròn (O) tại N.CMR D,N,E thẳng hàng
c)Cho góc BAC =45độ .Tính theo R chu vi hình phẳng giới hạn bởi AB,AC và cung BDC
Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O, đường kính BC. Đường tròn (O) cắt AB và AC lần lượt tại M và N
a, Chứng minh các cung nhỏ B M ⏜ và C N ⏜ có số đo bằng nhau
b, Tính M O N ^ biết B A C ^ = 40 0
Cho tam giác ABC vuông tại A (AB<AC).Đường tròn (O) đường kính AB cắt BC tại H .Tia phân giác góc HAC cắt BC tại E và cắt đường tròn (O) tại điểm thứ 2 lf D .Gọi F là giao điểm của AH và BD .chứng minh rằng
a)Tứ giác DEHF nội tiếp
b)Δ ABE cân
c)OD là tiếp tuyến của đường tòn ngoại tiếp tứ giác DEHF
Cho đường tròn tâm O ngoại tiếp tam giác ABC cân tại A qua A vẽ 1 cắt tuyến cắt dây BC tại D và cắt đường tròn tâm O tại E Chứng minh rằng AB^2 = AD × AE