Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
dragon gamer

Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM=CN
a)CMR:tam giác AMN cân
b)Kẻ BE vuông góc với AM, CF vuông góc với AN. CMR: tam giác BME=tam giác CNF
c)EB và FC cắt nhau tại O. CMR: AO là tia phân giác của góc MAN
d)Qua M kẻ đường thẳng vuông góc với AM, qua N kẻ đường thẳng vuông góc với AN, cắt nhau tại H. CMR:A, O, H thẳng hàng

Nguyễn Lê Phước Thịnh
7 tháng 3 2022 lúc 0:05

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

b: Xét ΔBEM vuông tại E và ΔCFN vuông tại F có

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó:ΔBEM=ΔCFN

c: Ta có: ΔBEM=ΔCFN

nên \(\widehat{BEM}=\widehat{CFN}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

=>OB=OC

hay O nằm trên đường trung trực của BC(1)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC

Ta có: ΔAMN cân tại A

mà AO là đường cao

nên AO là phân giác của góc MAN


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Phạm Anh Thư
Xem chi tiết
Trịnh Linh
Xem chi tiết
Trương Minh Duy
Xem chi tiết
Phạm Quỳnh Anh
Xem chi tiết
Thiên Ly
Xem chi tiết
Nguyễn Khánh
Xem chi tiết
Quang Anh Nguyễn
Xem chi tiết
Nguyễn Thùy Lâm
Xem chi tiết