Xét ΔABN và ΔACM có
AB=AC
\(\widehat{A}\) chung
AN=AM
Do đó: ΔABN=ΔACM
Suy ra: \(\widehat{ABN}=\widehat{ACM}\)
Xét ΔABN và ΔACM có
AB=AC
\(\widehat{A}\) chung
AN=AM
Do đó: ΔABN=ΔACM
Suy ra: \(\widehat{ABN}=\widehat{ACM}\)
Cho tam giác ABC cân ở A (A>90 độ ) .Trên cạnh AB,AC lần lượt lấy các điểm M và N sao cho AM=AN .Gọi O giao điểm của CM và BN .Chứng minh rằng : a, Tam giác ABN = Tam giác ACM
b,OM=ON
c, AO vuông góc với BC
d, OB + OC > AB
Bài 5: Cho tam giác ABC vuông cân tại A. Trên cạnh AB, AC lần lượt lấy các điểm M, N sao cho 2 góc ABN=ACM =15°. Gọi I là giao điểm của MC và NB. Gọi H, E, D lần lượt là trung điểm của BC, BN,СМ.
a) So sánh 2 tam giác ABN và ACM ;
b) Chứng minh Tam giác ADE đều
c) Chứng minh ba điểm A, I, H thẳng hàng;
d) Tính: góc DHE
Bài 5: Cho tam giác ABC vuông cân tại A. Trên cạnh AB, AC lần lượt lấy các điểm M, N sao cho 2 góc ABN=ACM 15°. Gọi I là giao điểm của MC và NB. Gọi H, E, D lần lượt là trung điểm của BC, BN,СМ.
a) So sánh 2 tam giác ABN và ACM
b) Chứng minh tam giác ADE đều
c) Chứng minh ba điểm A, I, H thẳng hàng ;
d) Tính: Góc DHE
cho tam giác abc có ab=ac. trên canh bc lấy hai điểm m và n sao cho bm=mn. biết am=an chứng minh rằng
a) tam giác amb=tam giác anc
b)góc abn= góc acm
Bài 1 cho tam giác ABC có AB=AC, góc C=70 độ tính góc A và góc B
bài 2 Cho tam giác ABC cân tại A Trên cạnh AB AC lần lượt lấy hai điểm M N sao cho AM = AN gọi giao điểm của BN và CM là I chứng minh rằng tam giác BIC cân
LÀM NHANH GIÚP MINH NHE
cho tam giác abc cân tại a và trung tuyến ad . lấy hai điểm m và n lần lượt nằm trên hai cạnh ab và ac sao cho am = an . trên tia đối của tia dn lấy điểm i sao cho dn=di . chứng minh rằng : b) bi//cn c) mn vuông góc mi
cho tam giác ABC cân tại A. Trên cạnh AB , AC lần lượt lấy 2 điểm M,N sao cho AM = AN. Gọi I là giao điểm của BN và CM.
a) C/m góc ABN = góc ACM
b) C/m tam giác BIC cân
c) C/m MN//BC
d) C/m AI vuông góc BC
giải câu d) thui
Cho tam giác ABC vuông tại A . Trên các cạnh AB, AC lần lượt lấy hai điểm M, N sao cho góc ABN=1/3 góc ABC và góc ACM = 1/3 góc ACB . Tính số đo góc MNB
1) Cho tam giác ABC vuông tại A ( AB > AC ) . Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên cạnh AB lấy điểm E sao cho AC = AE
a) Chứng minh rằng : tam giác ABC = tam giác ADE
b) Gọi M , N lần lượt là trung điểm của DE và BC. Chứng minh tam giác ADM = tam giác ABN và tam giác AMN vuông cân
c) Qua E kẻ EH vuông góc với BC tại H. Chứng minh rằng 3 điểm D ; E ; H thẳng hàng và CE vuông góc với BD