a) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}=\widehat{CAH}\)(AH là tia phân giác của \(\widehat{BAC}\))
AH chung
Do đó: ΔABH=ΔACH(c-g-c)
b) Ta có: ΔABH=ΔACH(cmt)
nên BH=CH(hai cạnh tương ứng)
Xét ΔABH và ΔKCH có
BH=CH(cmt)
\(\widehat{AHB}=\widehat{CHK}\)(hai góc đối đỉnh)
AH=KH(gt)
Do đó: ΔABH=ΔKCH(c-g-c)
Suy ra: \(\widehat{BAH}=\widehat{CKH}\)(hai góc tương ứng)
mà \(\widehat{BAH}\) và \(\widehat{CKH}\) là hai góc ở vị trí so le trong
nên AB//CK(Dấu hiệu nhận biết hai đường thẳng song song)
c) Sửa đề: I là trung điểm của DC
Ta có: AB=AC(ΔABC cân tại A)
mà AB=AD(Gt)
nên AC=AD
Xét ΔACI và ΔADI có
AC=AD(cmt)
AI chung
CI=DI(I là trung điểm của DC)
Do đó: ΔACI=ΔADI(c-c-c)
d) Ta có: ΔACI=ΔADI(cmt)
nên \(\widehat{AIC}=\widehat{AID}\)(hai góc tương ứng)
mà \(\widehat{AIC}+\widehat{AID}=180^0\)(hai góc kề bù)
nên \(\widehat{AIC}=\widehat{AID}=\dfrac{180^0}{2}=90^0\)
hay AI⊥CD(1)
Ta có: AB=AD(gt)
mà B,A,D thẳng hàng(gt)
nên A là trung điểm của BD
Xét ΔCBD có
CA là đường trung tuyến ứng với cạnh BD(A là trung điểm của BD)
\(CA=\dfrac{BD}{2}\left(CA=AB=\dfrac{BD}{2}\right)\)
Do đó: ΔCBD vuông tại C(Định lí)
⇒BC⊥CD(2)
Từ (1) và (2) suy ra AI//BC(Đpcm)