Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mon an

Cho tam giác ABC cân tại A . Lấy điểm M trên cạnh BC (MB MC). Trên tia đối của tia CB lấy điểm N sao cho BM CN . Đường thẳng qua M vuông góc với BC cắt AB tại E . Đường thẳng qua N vuông góc BC cắt AC tại F .

a) Chứng minh: EM FN

b) Qua E kẻ ED // AC ( D BC ). Chứng minh MB< MD .

c) EF cắt BC tại O . Chứng minh OE= OF .

Nguyễn Lê Phước Thịnh
3 tháng 12 2023 lúc 13:47

a: ΔACB cân tại A

=>\(\widehat{ABC}=\widehat{ACB}\)

mà \(\widehat{ACB}=\widehat{FCN}\)(hai góc đối đỉnh)

nên \(\widehat{ABC}=\widehat{FCN}\)

Xét ΔEBM vuông tại M và ΔFCN vuông tại N có

BM=CN

\(\widehat{EBM}=\widehat{FCN}\)

Do đó: ΔEBM=ΔFCN

=>EM=FN

b: ED//AC

=>\(\widehat{EDB}=\widehat{ACB}\)(hai góc đồng vị)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{EDB}=\widehat{ABC}\)

=>\(\widehat{EBD}=\widehat{EDB}\)

=>ΔEBD cân tại E

ΔEBD cân tại E

mà EM là đường cao

nên M là trung điểm của BD

=>MB=MD

c: EM\(\perp\)BC

FN\(\perp\)BC

Do đó: EM//FN

Xét ΔOME vuông tại M và ΔONF vuông tại N có

ME=NF

\(\widehat{MEO}=\widehat{NFO}\)(hai góc so le trong, EM//FN)

Do đó: ΔOME=ΔONF

=>OE=OF