Xét ΔABC có AM/AB=AN/AC
nên MN//BC
\(\Delta ABC\) cân tại A \(\Rightarrow\widehat{ACB}=\dfrac{180^o-\widehat{BAC}}{2}\) ( 1)
Mặt khác , ta có AM = AN \(\Rightarrow\Delta AMN\) cân tại A
\(\Rightarrow\widehat{ANM}=\dfrac{180^o-\widehat{MAN}}{2}\) ( mà \(M\in AB;N\in AC\) nên \(\widehat{MAN}=\widehat{BAC}\) )
\(\Rightarrow\widehat{ANM}=\dfrac{180^o-\widehat{BAC}}{2}\) ( 2 )
Từ (1), (2)\(\Rightarrow\) \(\widehat{ACB}=\widehat{ANM}\) mà 2 góc này ở vị trí so le trong tại MN và BC nên MN // BC ( đpcm)
( Giải thích (1) : \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^O\) \(\Rightarrow\widehat{ABC}+\widehat{ACB}=180^O-\widehat{BAC}\) mà \(\widehat{ABC}=\widehat{ACB}\) do \(\Delta ABC\) cân tại A
\(\Rightarrow2.\widehat{ACB}=180^O-\widehat{BAC}\)
\(\Rightarrow\widehat{ACB}=\dfrac{180^O-\widehat{BAC}}{2}\)
Còn (2) thì tương tự như (1) )