Cho tam giác ABC cân tại A, biết AB = AC = 6cm, BC = 4cm. Các đường phân giác BD, CE cắt nhau tại I ( E thuộc AB ; D thuộc AC)
a. Tính AD, DC , DE
B. Cm : tam giác IDC đồng dạng CDB
c. Tính BD , CE
Cho tam giác cân ABC(AB=AC).Trên tia đối của các tia BA và CA lấy hai điểm D và E sao cho BD=CE
a)CM DE//BC
b)Từ D kẻ DM vuông góc với BC,từ E kẻ EN vuông góc với BC.CM DM=EN
c)CM tam giác AMN là tam giác cân
d)Từ B và C kẻ các đường vuông góc với AM và AN chúng cắt nhau tại I.CM AI là tia phân giác chung của 2 góc BAC và góc MAN
Cho tam giác ABC có AB = 12 cm, AC = 20 cm ,BC = 28 cm . Đường phân giác góc A cắt BC tại D . Qua D kẻ DE // AB ( E thuộc AC )
a) Tính độ dài của đoạn thẳng BD , DC, DE.
b) Cho biết diện tích tam giác ABC là S , tính diện tích các tam giác ABD , ADE , DCE.
Cho tam giác ABC cân tại A,AB=24cm,AC=32cm,góc C=60,BD phân giác góc B.Đường thẳng đi qua D vuông góc với BC tại M cắt tia BA tại K
a Cm tam giác BDC cân
b Cm BD vuông góc KC
c Từ M kẻ ME vuông góc AC(E thuộc AC).Tính ME
Cho tam giác ABC vuông tại A,AB=24cm,AC=32cm,góc C=60,BD phân giác góc B.Đường thẳng đi qua D vuông góc với BC tại M cắt tia BA tại K
a Cm tam giác BDC cân
b Cm BD vuông góc KC
c Từ M kẻ ME vuông góc AC(E thuộc AC).Tính ME,
Cho tam giác ABC ( góc A = 90 độ ) có AB = 9 cm, AC = 12 cm. Tia phân giác góc A cắt BC tại D. Từ D kẻ DE vuông góc với AC ( E thuộc AC ).
a) Tính độ dài của BD, CD và DE
b) Tính diện tích tam giác ADB và BCD
cho tam giác ABC cân tại A có BC = 2a (k đổi) . M là trung điểm của BC . D , E lần lượt thuộc AB, AC sao cho góc DME = góc B .
a) CM: BD . CE ( k đổi )
b) CM: DM là phân giác của góc BDE
Cho tam giác ABC vuông tại A,AB=24cm,AC=32cm,góc C=60,BD phân giác góc B.Đường thẳng đi qua D vuông góc với BC tại M cắt tia BA tại K
a Cm tam giác BDC cân
b Cm BD vuông góc KC
c Từ M kẻ ME vuông góc AC(E thuộc AB).Tính ME
Cho tam giác ABC vuông tại A có AB=9 cm,AC = 12 cm tia phân giác góc A cắt BC tại D, từ D kẻ DE vuông góc AC (E thuộc AC)
a,Tính độ dài BD và CD
b, kẻ đường cao AH. Hãy chứng minh tam giác ABH đồng dạng tam giác CDE