a: Xet ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
=>ΔABI=ΔACI
b: ΔABC cân tại A
mà AI là trung tuyến
nên AI vuông góc BC
c: GI=1/3*AI=4cm
a: Xet ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
=>ΔABI=ΔACI
b: ΔABC cân tại A
mà AI là trung tuyến
nên AI vuông góc BC
c: GI=1/3*AI=4cm
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
Cho ∆ABC vuông tại A có BC=6cm,AC=8cm a)Tính BC b)Vẽ tia phân giác của ∆ABC cắt AC tại DD. Kẽ DI vuông góc BC( I thuộc BC) Chứng minh ∆ABC=∆IBD c) Chứng minh ∆ABI là tam giác cân d) Chứng minh BD là đường trung trực của AI e)Gọi K là giao điểm của AB và ID. Chứng minh f) SS:AD và DC g)∆BKC là ∆ j? Vì sao
Cho tam giác ABC cân tại A với BC > BA , đường trung tuyến Ai và trọng tâm G khi Ai = 24 cm
a)Tính độ dài AG , GI
b)trên tia BG lấy K sao cho g là trung điểm của bk Gọi H là giao điểm của bk và AC Chứng minh H là trung điểm của GK c)
chứng minh CK vuông góc với BC
Cho tam giác ABC cân tại A, góc A nhọn. Tia phân giác góc A cắt BC tại I.
a) Chứng minh: AI vuông góc BC
b) Gọi D là trung điểm AC, M là giao điểm của BD và AI. Chứng minh rằng: M là trọng tâm của tam giác ABC.
c) Biết AB=AC=5cm, BC=6cm. Tính AM?
Tam giác ABC cân tại A ( góc A nhọn). Tia phân giác góc của A cắt BC tại I
a) Chứng minh AI vuông góc BC
b) Gọi D là trung điểm của AC, M là giao điểm của BD với AI. Chứng minh rằng M là trọng tâm của của tam giác ABC.
c) Biết AB=AC=5cm; BC=6cm. Tính AM
Cho tam giác ABC cân tại A, có góc BAC nhọn. Qua A vẽ tia phân giác của góc BAC cắt cạnh BC tại D. a) Chứng minh ΔABD = ΔACD. b) Vẽ đường trung tuyến CF của tam giác ABC cắt cạnh AD tại G. Chứng minh G là trọng tâm của tam giác ABC. c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh ΔDEC cân. d) Chứng minh ba điểm B, G, E thẳng hàng và AD > BD.
Cho tam giác ABC cân tại A có góc A<90độ,tia phân giác của góc A cắt BC tại I
a)Chứng minh tam giác ABI=tam giác ACI
b)Chứng minh AI vuông góc BC
c)Gọi M là trung điểm của AB,G là giao điểm của CM và AI.Chứng minh rằng BG là đường trung tuyến của tam giác ABC
cho tam giác abc cân tại a góc a bằng 50 độ. Gọi i là trung điểm của bc, trên tia đối của tia ia lấy d sao cho ia=id. a, chứng minh tam giác abi= tam giác aci và ai vuông góc với bc? b, chứng minh ab=cd và tính số đo góc idc? c, trên 1 nửa mặt phẳng bờ bc không chứa a kẻ be vuông góc với bc sao cho be=ai, gọi ô là trung điểm của bi. chứng minh ba điểm a, ô, e thẳng hàng?
Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.
a) Tính độ dìa AC khi AB= 9cm, BC= 15cm
b) Chứng minh: Tam giác ABD=tam giác EBD
c) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC cân
d) Chứng minh: AD<DC
Bài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam giác ABC. Từ điểm C kẻ đường thẳng vuông góc với AC cắt đường trung tuyến BF tại D
a) Tính độ dài BC?
b) Chứng minh rằng: Tam giác ABF=tam giác CDF
c) Chứng minh: BF<(AB+BC):2
Bài 3: Cho tam giacsABC vuông tại A; tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC\(\left(H\in BC\right)\). Gọi K là giao điểm của AB và DH
a) Tính độ dài BC khi AB= 9cm, AC= 12cm
b) Chứng minh: Tam giác ABD=tam giác HBD
c) Chứng minh: Tam giác KDC cân
d) Chứng minh: AB+AC>BD+DC
Bài 4: Cho tam giác ABC vuông tại A. Trên tia BC lấy điểm H sao cho BH=BA. Tia phân giác của góc B cắt AC tại D. Gọi K là giao điểm của AB và DH
a) Tính độ dài BC khi AB= 3cm, AC= 4cm
b) Chứng minh: Tam giác ABD=tam giác HBD
c) Chứng minh \(Dh\perp BC\)
d) So sánh DH với DK