a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: G ko cách đều ba cạnh của ΔABC vì G ko phải là tâm đường tròn nội tiếp tam giác
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: G ko cách đều ba cạnh của ΔABC vì G ko phải là tâm đường tròn nội tiếp tam giác
: Cho tam giác ABC nhọn và cân tại A, đường cao AH (H∈BC).
a/ Hai tam giác ABH và ACH có bằng nhau không? Vì sao?
b/ Tia AH có phải là tia phân giác của góc BAC không? Vì sao?
c/ Kẻ tia phân giác BK (K ∈ AC) của góc ABC. Gọi O là giao điểm của AH và BK. Chứng minh rằng CO là tia phân giác của góc ACB.
cho tam giác ABC cân tại A. kẻ AH vuông góc BC tại H
a) CM tam giác ABH= tam giác ACH
b) vẽ trung tuyến BM, gọi G là giao điểm của AH và BM. CM G là trọng tâm cuẩ tam giác ABC
c) CHo AB= 30cm, BH= 18 cm. Tính AH<,AG
d) Từ H kẻ HD// với AC ( D thuộc AB) CM 3 điểm C,G,D thẳng hàng
cho tam giác abc cân tại a đường phân giác ah ( h thuộc bc) gọi d là trung điểm của ac, bd cắt ah tại g. từ h kẻ đường thẳng song song vưới ac cắt ab tại k chứng minh
a) tam giác abh = tam giác ach và ah vuông góc với bc
b) g là trọng tâm của tam giác abc
c) 3 điểm c,g k thẳng hàng
Cho tam giác ABC cân tại A . Vẽ AH vuông góc với BC (H thuộc BC).
a. CM: tam giác ABH= tam giác ACH và H là trung điểm BC
b.cho biết AC = 13 cm; AH = 12 cm. Tính BC
c. Gọi M là trung điểm của AB. Đường thẳng vuông góc với AB tại M cắt AH tại E . CMR: tam giác AEB cân .
d. Trên cạnh AB; AC lần lượt lấy các điểm D ; F sao cho BD = AF . CM : EF< DF/2
ch tam giác ABC cân tại A . kẻ AH vuông góc BC tại H .a, cm tam giác ABH=tam giác ACH
b, vẽ trung tuyến BM. gọi G là giao điểm của AH và BM . chứng minh G là trọng tâm của tam giác ABC
c, cho AB=30cm , BH =18cm . Tính AH , AG
d, từ H kẻ HD song song với AC ( D € AB ) . cm 3 điểm C;G;D thẳng hàng.
Cho tam giác ABC cân tại A. Vẽ đường cao AH
a) CM:tam giác ABH=tam giác ACH
b) Gọi G là điểm thuộc AH sa cho GH=1phần 3 AH. CM:G là trọng tâm của tam giác ABC
c) CM: tam giác BGC cân
d) gọi M là trung điểm AC. CM: B,G,M thẳng hàng
Cho tam giác ABC cân tại A . góc A < 90 độ , kẻ AH vuông góc BC a, tam giác ABH = tam giác ACH b, AH=4cm , BH=3cm , tính AB =? c, Qua H kẻ đường thẳng song song AC . Cắt AB tại M . Gọi G là giao điểm của CM và AH . Chứng minh G là trọng tâm của tam giác ABC . Tính AG d, chứng minh CG< CA+CB:3
Cho tam giác ABC cân tại A kẻ AH vuông góc với BC ( H thuộc BC )
a) chứng minh tam giác ABH = tam giác ACH
b) Gọi N là trung điểm của AC hai đoạn thẳng BN và AH cắt nhau tại G trên tia đối của tia NB lấy K sao cho NK = NG
chứng minh G là trọng tâm của tam giác ABC và AG // CK
c) chứng minh G là trung điểm BK
Cho tam giác ABC cân tại A. Kẻ AH \(\perp\)BC tại H
a, Cm : Tam giác ABH = Tam giác ACH
b, Vẽ trung tuyến BM . Gọi G là giao điểm của AH và BM . Chứng minh G là trọng tâm của tam giác ABC
c,Cho AB=30cm , BH=18cm .Tính AH , AG
d, Từ H kẻ HD song song với AC ( D thuộc AB) . CHứng minh 3 điểm C,G,D thẳng hàng