Cho tam giác ABC cân tại A. Kẻ phân giác CD. Qua D vẽ đường thẳng vuông góc với CD, cắt BC tại F và cắt CA tại K. Đường thẳng kẻ qua D và song song với BC cắt AC tại E. Phân giác của góc BAC cắt DE tại M. Chứng minh rằng
c,CF= 2 BD
d) MD= 1 phần 4 CF
Thách ai làm được(ko copy)
Cho tam giác ABC cân tai A, CD là tia phân giác của của góc C ( D thuộc AB). Qua D, kẻ 1 đường thẳng vuông góc với CD cắt BC tại F. Đường thẳng kẻ qua D song song với BC cắt AC tại E, tia phân giác góc BAC cắt DE tại M.
a) CM : CF = 2BD
b) CM : MD = 1/4 CF
Cho tam giác ABC cân tại A. Kẻ phân giác CD ( D không thuộc AB). Qua D vẽ đường thẳng vuông góc với CD, cắt BC tại F và cắt CA tại K. Đường thẳng kẻ qua D và song song với BC cắt AC tại E. Phân giác của góc BAC cắt DE tại M. Chứng minh rằng: a) Hai tam giác CDF và CDK bằng nhau
GIÚP MIK ĐI GẤP QUÁ
Cho tam giác ABC cân tại A, phân giác CD.Qua D vẽ đường thẳng vuông góc với CD cắt BC tại F; đường thẳng kẻ qua D và song song với BC cắt AC tại E. Phân giác của góc BAC cắt DE tại M. Chứng minh:
a, CF= 2BD
b, MD= \(\frac{1}{4}\)CF
Cho tam giác ABC vuông tại A. Vẽ tia Cx vuông góc với BC và cắt đường phân giác góc B tại F. BF cắt AC tại E. Kẻ CD vuông góc với EF. Kéo dài CD và AB cắt nhau tại Q. Chứng minh rằng:
a) CD là đường phân giác góc ECF
b) DE=DF
c) QE vuông góc với BC và QE song song với CF
cho tam giác ABC cân tại A. Kẻ tia phân giác góc C cắt AB tại D. Từ D kẻ đường vuông góc cắt BC tại F và vẽ đường thẳng cắt AC tại E song song với BC. Gọi M là trung điểm của DE và tia phân giác của góc BAC. Chứng minh:
a)DB=1/2CF
b) DM=1/4CF
( nhanh nhé!)
Cho tam giác ABC cân tại A. từ B kẻ đường thẳng vuông góc với AB, từ C kẻ đường thẳng vuông góc với AC .hai đường thẳng này cắt nhau tại D Chứng minh
A,AD là tia phân giác của góc BAC và tam giác BDC cân
B,Trên tia đối của tia bc lấy điểm E trên tia đối của tia CD lấy điểm F sao cho CF = BE.chứng minh AE = AF
C,chứng minh EF song song BC
Cho tam giác ABC cân tại A tia phân giác CD . Qua D kẻ đường thẳng vuông góc với DC cắt CA và CB tại K và F. Qua D kẻ DE song song BC ( E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
a, CF = 2BD
b, DM = 1/4 CF
Cho tam giác ABC cân tại A, có góc A nhọn. Tia phân giác góc BCA cắt AB tại D. Từ D kẻ đường thẳng DF vuông góc với DC và DE song song với BC(F thuộc BC, E thuộc AC). Tia phân giác của góc BAC cắt DE tại M.
Chứng minh rằng DM=\(\frac{1}{4}\)FC