1.Cho tam giác ABC cân tại A có góc A là góc nhọn thỏa mãn cosA=2/3. Vẽ đường tròn đường kính AB cắt AC ở D. Biết AB=6cm, tính độ dài BC.
2.trên mp tọa độ Oxy,cho 2 điểm A(0;6) và B(\(2\sqrt{7}\);0).tính bán kính đường tròn ngoại tiếp tam giác OAB( O là gốc tọa độ và đơn vị đo trên các trục tọa độ là cm)
3.cho (O)có bán kính R= \(\sqrt{3}\) và (O') có bán kính r= i.biết độ dài OO'= \(\sqrt{4-2\sqrt{3}}\).hãy xác định vị trí tương đối của 2 đường tròn (O;R) và (O';r).Giải thích ?
ai nhanh nhat va dung mk se tick
Bài 1: Cho nửa đường tròn (O) đường kính AB và dây cung AC. N là điểm chính giữa của cung CB. Chưng minh AN là tia phân giác của góc CAB
Bài 2: Cho tam giác ABC nhọn nối tiếp đường trnf (O) đường kính BD. Biết góc BAC bằng 45 độ. Tính số đo góc CBD
Bài 3 cho tam giác ABC nhọn có góc BAC= 60 độ. vẽ đường tròn đường kính BC tâm O cắt AB, AC lần lượt tại D và E. tính số đo góc ODE
giúp mình với mình đang cần gấp :((
Cho tam giác ABC vuông tại A, đường cao AH. a) Giải tam gaics ABC biết góc B = 36 và AC =6cm b)vẽ đường tròn tâm I đường kính BH cắt AB tại M và đường tròn tâm K đường kính CH cắt AC tại N. Chứng minh tứ giác AMHN là hình chữ nhật. Tính độ dài MN. c) CHứng minh MN là tiếp tuyến chung của đường tròn (I) và (K) d) Nêu điều kiện về tam giác ABC để MN có độ dài lớn nhất
Cho tam giác ABC nhọn (AB<AC), BC=2a và góc BAC =60 độ Vẽ đường tròn tâm O đường kính BC cắt AB, AC ở F và E.BE và CF cắt nhau tại H. gọi I là trung điểm của AH. tính bán kính đường tròn ngoại tiếp tứ giác EFOI
Cho tam giác ABC nhọn (AB<AC), BC=2a và góc BAC =60 độ Vẽ đường tròn tâm O đường kính BC cắt AB, AC ở F và E.BE và CF cắt nhau tại H. gọi I là trung điểm của AH. tính bán kính đường tròn ngoại tiếp tứ giác EFOI
Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc
Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm,
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH.
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN
Cho tam giác ABC cân tại A, có góc A nhọn. Từ A vẽ đường thẳng vuông góc AB, đường thẳng này cắt BC tại D. Đường tròn tâm K đường kính AD cắt DC và AC lần lượt tại H và E. a) CM: Tam giác AHD và tam giác AED vuông. b) CM: H là trung điểm BC c) AH^2 =HC.HD d) CM DH là tia phân giác của góc ADE. CM KH song song DE
Cho tam giác ABC vuông tại A có AB = 5cm, B = 60 0 . Đường tròn tâm I, đường kính AB cắt BC ở D
a, Chứng minh AD vuông góc vói BC
b, Chứng minh đường tròn tâm K đường kính AC đi qua D
c, Tính độ dài cung nhỏ BD
Bài 6. (3đ) Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường tròn tâm O đường kính AB cắt BC tại điểm H. a.Tính độ dài AH, CH b. Kẻ OK vuông góc với AH tại K và tia OK cắt AC tại D. Chứng minh: DH là tiếp tuyến của đường tròn (O) c. Từ trung điểm I của AK kẻ đường thẳng vuông góc với AB và cắt đường tròn tại điểm M. Chứng minh: AM = AK.