Cho tam giác ABC cân tại A. Kẻ phân giác CD. Qua D vẽ đường thẳng vuông góc với CD, cắt BC tại F và cắt CA tại K. Đường thẳng kẻ qua D và song song với BC cắt AC tại E. Phân giác của góc BAC cắt DE tại M. Chứng minh rằng
c,CF= 2 BD
d) MD= 1 phần 4 CF
Thách ai làm được(ko copy)
Cho tam giác ABC cân tại A, phân giác CD.Qua D vẽ đường thẳng vuông góc với CD cắt BC tại F; đường thẳng kẻ qua D và song song với BC cắt AC tại E. Phân giác của góc BAC cắt DE tại M. Chứng minh:
a, CF= 2BD
b, MD= \(\frac{1}{4}\)CF
Cho tam giác ABC cân tại A tia phân giác CD . Qua D kẻ đường thẳng vuông góc với DC cắt CA và CB tại K và F. Qua D kẻ DE song song BC ( E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
a, CF = 2BD
b, DM = 1/4 CF
Cho tam giác ABC cân tại A. Kẻ phân giác CD ( D không thuộc AB). Qua D vẽ đường thẳng vuông góc với CD, cắt BC tại F và cắt CA tại K. Đường thẳng kẻ qua D và song song với BC cắt AC tại E. Phân giác của góc BAC cắt DE tại M. Chứng minh rằng: a) Hai tam giác CDF và CDK bằng nhau
GIÚP MIK ĐI GẤP QUÁ
Cho tam giác ABC cân tại A có tia phân giác CD của góc ACB từ D kẻ đường vuông góc với CD cắt BC tại F và kẻ đường thẳng song song với BC cắt AC tại E tia phân giác góc BAC cắt DE tại M .Chứng minh rằng
a, BF=2BD
b,CF=4DM
Cho tam giác ABC có AB<AC.Từ điểm D là trung điểm của BC vẽ đường vuông góc với tia phân giác của góc A tại H.Đường thẳng này cắt tia AB tại E và cắt AC tại F . Vẽ tia BMsong song với EF(M thuộc AC)
a)CM: tam giác ABM cân
b)CM:MF=BE=CF
c)Qua D kẻ đường thẳng vuông góc với BC cắt tai AM tại I CMR: IF vuông góc AC
Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân
Cho tam giác ABC cân tại A. Tia phân giác của góc C cắt AB ở D (D thuộc AB). Qua D kẻ DF vuông góc với DC(F thuộc BC).Kẻ DE song song với BC. Tia phân giác của góc C cắt DE tại M. Chứng minh rằng : CF=2BD
Cho tam giác ABC cân tại A. từ B kẻ đường thẳng vuông góc với AB, từ C kẻ đường thẳng vuông góc với AC .hai đường thẳng này cắt nhau tại D Chứng minh
A,AD là tia phân giác của góc BAC và tam giác BDC cân
B,Trên tia đối của tia bc lấy điểm E trên tia đối của tia CD lấy điểm F sao cho CF = BE.chứng minh AE = AF
C,chứng minh EF song song BC