a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
AB=AC
\(\hat{EAB}\) chung
Do đó: ΔAEB=ΔAFC
=>EB=FC
b: Xét ΔFBC vuông tại F và ΔECB vuông tại E có
BC chung
FC=EB
Do đó: ΔFBC=ΔECB
=>\(\hat{FCB}=\hat{EBC}\)
=>\(\hat{IBC}=\hat{ICB}\)
=>ΔIBC cân tại I
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
AB=AC
\(\hat{EAB}\) chung
Do đó: ΔAEB=ΔAFC
=>EB=FC
b: Xét ΔFBC vuông tại F và ΔECB vuông tại E có
BC chung
FC=EB
Do đó: ΔFBC=ΔECB
=>\(\hat{FCB}=\hat{EBC}\)
=>\(\hat{IBC}=\hat{ICB}\)
=>ΔIBC cân tại I
Câu 2: Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB E AC (FAB)
a) Chứng minh ABE ACF.
b) Gọi I là giao điểm của BE và CF. Chứng minh BIC cân
Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB
(E thuộc AC, F thuộc AB )
a/ Chứng minh: tam giác ABE = tam giác ACF .
b/ Gọi I là giao điểm của BE và CF. Chứng minh: tam giác BIC là tam giác cân.
c/ Gọi M là trung điểm của BC. Chứng minh: 3 điểm A, I, M thẳng hàng
Vẽ hình luôn cho mik nha, cảm ơn rất nhiều
Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB ( E thuộc Ac, F thuộc AB) a) cm tam giác ABE= tam giác ACF b) gọi I là giao điểm BE và CF. Chứng minh tam giác BIC cân c) so sánh FI và IC d) gọi M là trung điểm cảu BC. Chứng minh A,I,M thẳng hàng ( giúp mk vs mai mk nộp r)
Cho tam giác ABC cân tại A và các điểm E, F lần lượt nằm trên các cạnh AC, AB sao cho BE vuông góc với AC, CF vuông góc với AB,BE cắt BF tại M. a.Chứng minh rằng BE = CF b. chứng minh AM là đường trung trực của BC(kẻ hình , 0 cần viết giả thiết kết luận)
Cho tam giác ABC cân tại A . Kẻ BE và CF lần lượt vuông góc với AC và AB ( E thuộc AC , F thuộc AB )
a, chứng minh BE=CF và góc ABE = góc ACF
b, gọi I là giao điểm của BE và CF , chứng minh rằng IE=IF
c, chứng minh AI là tia phân giác của góc A
Câu 6: Cho tam giác ABC cân ở A. Kẻ BE và CF lần lượt vuông góc với AC và AB (E ∈ AC; F ∈ AB).
1) Chứng minh rằng BE = CF và
2) Gọi I là giao điểm của BE và CF, chứng minh rằng IE = IF
3) Chứng minh AI là tia phân giác của góc A.
Cho tam giác ABC cân tại A. Kẻ BE vuông góc với AC (E thuộc AC), CF vuông góc với AB (F thuộc AB
a) Chứng minh tam giác ABE=ACF
b) Gọi I là giao điểm của BE và CF. Chứng minh tam giác BIC cân
c) Chứng minh AI là tia phân giác của góc A
GIÚP MÌNH. MÌNH CẦN GIẢI GẤP
Các bạn giúp mình bài này với:
Cho tam giác ABC cân ở A. Kẻ BE, CF lần lượt vuông góc với AC và AB (E thuộc AC, F thuộc AB)
a) Chứng minh: ∆ABE = ∆ACF
b) Gọi I là giao điểm của BE và CF. Chứng minh: ∆BIC cân.
c) Gọi M là trung điểm của BC. Chứng minh: A, I, M thẳng hàng.
Cho tam giác ABC cân tại A . Kẻ BE và CF lần lượt vuông góc với AC và AB ( E thuộc AC , F thuộc AB )
a, chứng minh BE=CF và góc ABE = góc ACF
b, gọi I là giao điểm của BE và CF , chứng minh rằng IE=IF
c, chứng minh AI là tia phân giác của góc A
Vẽ hình giúp mk nha
THX
Cho tam giác ABC cân tại A . Kẻ BE và CF lần lượt vuông góc với AC và AB ( E thuộc AC , F thuộc AB )
a, chứng minh BE=CF và góc ABE = góc ACF
b, gọi I là giao điểm của BE và CF , chứng minh rằng IE=IF
c, chứng minh AI là tia phân giác của góc A
Vẽ hình giúp mk nha
THX