Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lucy Heartfilia

Cho tam giác ABC cân tại A ( A<90o). Kẻ BD vuông góc với AC ( D thuộc AC), CE vuông góc với AB ( E thuộc AB), BD và CE cắt nhau tại H.

a) Chứng minh: BD=CE

b) Chứng minh: tam giác BHC cân

c) Chứng minh: AH là đường trung trực của BC

d) Trên tia BD lấy điểm K sao cho D là trung điểm của BK. So sánh góc EBC và góc DKC.

Long
23 tháng 4 2017 lúc 8:30

A) Xét tam giác BEC và tam giác CDB có :

            \(\widehat{BEC}\)=\(\widehat{CDB}\)=\(90^0\)

          \(BC\)chung

          \(\widehat{EBC}\)=\(\widehat{DCB}\)( giả thiết )

       \(\Rightarrow\Delta EBC=\Delta DCB\left(G-C-G\right)\)

       Vậy \(BD=CE\)   ( hai canh tương ứng )

B) Xét tam giác DHC và tam giác EHC có :

         \(\widehat{EBH}\)  =\(\widehat{DCH}\)( vì góc CDH=góc BEB ; góc EHB = góc DHC )

          EB=DC ( theo phần a )

         \(\widehat{HEB}\)=\(\widehat{CDH}\)=900

            \(\Rightarrow\)\(\Delta EHB=\Delta DHC\left(G-C-G\right)\)

       \(\Rightarrow BB=HC\)( HAI CẠNH TƯƠNG ỨNG )

\(\Rightarrow\Delta BHC\)cân ( định lí tam giác cân )

         C) Ta có : AB =AC ( giả thiêt )

     Vậy góc A cách đều hai mút B và C 

       Vậy AH là đường trung trực của BC

   d)Xét tam giác BDC và tam giác KDC có : 

 DK=DB ( GT )

     CD ( chung )

     suy ra tam giác BDC =tam giác KDC ( cạnh huyền - cạnh góc vuông )

    \(\Rightarrow\) \(\widehat{BCD}\)=\(\widehat{KCD}\)( HAI GÓC TƯƠNG ỨNG ) 

   Mà ta lai có góc EBC = góc BCD  theo giả thiết )

         \(\Rightarrow\)\(\widehat{EBC}\)=\(\widehat{EBC}\)

  chúc bạn hok giỏi 


Các câu hỏi tương tự
Bạc Violet
Xem chi tiết
Trần Thị Ngọc Hân
Xem chi tiết
Vũ Hương Giang
Xem chi tiết
Nguyễn Diệu Linh
Xem chi tiết
Khanh Linh Ha
Xem chi tiết
Nguyễn Văn Tiến
Xem chi tiết
Thanh Hằng
Xem chi tiết
trần thị minh nguyệt
Xem chi tiết
Khai Ha
Xem chi tiết