Cho tam giác ABC có AB=6cm;AC=3cm;BC=7,5cm. Đường phân giác trong tam giác của góc A cắt BC tại D.
a/ Tính DB,DC
b/ Tìm tỉ số diện tích của hai tam giác ADC và ADB
c/ Tia phân giác của góc ADC cắt AC tại M, Tia phân giác của góc ADB cắt AB ở N, biết. Chứng Minh MN//BC
d/ MN cắt AM tại I . Chứng minh I là trung điểm của MN
giúp em nhanh câu B ạ
cho tam giác ABC vuông tại A . kẻ AD là phân giác của góc ABC
a ) biết BC = 5cm ; AB = 3cm . tính AC vaf AD
b) qua D kẻ DH vuông góc vs BC tại H . CMR : tam giác ABC ~ vs tam giác HDC
Bài 1: cho tam giác abc , trung tuyến ad. Tia phân giác của góc adc cắt ab ở m tia phân giác của góc adc cắt ac ở n . Biết dm=dn. Chứng minh rằng tam giác abc là tam giác cân
Bài2: cho tam giác abc cân có ab=ac=5cm, bc=6cm. Các đường phân giác ai, bk, ch
a) tính độ dài kh
b) tính diện tích tam giác ikh
Cho tam giác ABC vuông tại A có AB = 4.5cm, AC = 6cm. Đường cao AH và trung tuyến AD. Kẻ DE và DF lần lượt là phân giác của góc ADB và góc ADC.
A. Cm tam giác HBA đồng dạng vói tam giác ABC.
B. Tính AH.
C. Diện tích ABC.
D. Cm EF//BC.
Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
Cho tam giác ABC vuông tại A, có AB=9 cm , AC= 12 cm
Kẻ đường cao AH( H thuộc BC)
a) Chứng minh Tam giác HBA đồng dạng với tam giác ABC
b) Tính độ dài các đoạn thẳng BC,BH
c) Trong tam giác ABC kẻ phân giác AD( D thuộc BC) của góc BAC
Trong tam giác ADB kẻ phân giác DE( E thuộc AB) của góc ADB
Trong tam giác ADC kẻ phân giác DF (F thuộc AC) của góc ADC
Chứng minh rằng \(\frac{EB}{EA}+\frac{FC}{FA}=\frac{BC}{DA}\)
cho tam giác ABC vuông tại A, đường cao AD . trên tia đối của tia CB lấy điểm E sao cho AC là tia phân giác của góc DAE.
a\ cmr : tam giác ADB đồng dạng với tam giác CAB
b\ bt AB=12 cm, AC=9cm . tính AD
c\ cmr : CDtrên CE=BD trên DE
1,cho tam giác ABC.Trên các cạnh AB,BC,CA lần lượt lấy các điểm M,D,N ko trung với 3 đỉnh của tam giác.Cho biết AM.BD.CN=AN.CD.BM .CMR:nếu tia DM là tia phân giác của góc ADB thì DN cũng là tia phân giác của góc ADC
Cho tam giác ABC vuông tại A có đường phân giác AD và đường cao AH (D,H thuộc BC). Biết AB=12cm; AC=16cm.
a, C/M tam giác HBA đồng dạng tam giác ABC, từ độ dài AH?
b, Gọi DE,DF lần lượt là đường phân giác của góc ADB và góc ADC. C/M AE.FC>BE.FA
M.n giải zùm câu b