Bài 2. TỔNG VÀ HIỆU CỦA HAI VECTO

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
anh tuấn

cho tam giác ABC bất kì , gọi M,N,P lần lượt là trung điểm các cạnh AB,BC,CA . H,H' lần lượt là trực tâm của tam giác ABC,MNP. .Khẳng định nào sau đây đúng?

A) vecto HA + vecto HB + vecto HC = 3vecto HH'

B) vecto HA + vecto HB + vecto HC = 2vecto HH'

C) vecto HA + vecto HB + vecto HC = vecto 0

D) vecto HM + vecto HN + vecto HP = 3vecto HH'

Akai Haruma
31 tháng 8 2020 lúc 0:13

Lời giải:

Có thể loại ngay đáp án C vì nếu $H\equiv G$( $G$ là trọng tâm $ABC$) thì ta mới có công thức trên.

$\overrightarrow{HM}+\overrightarrow{HN}+\overrightarrow{HP}=\frac{1}{2}(2\overrightarrow{HM}+2\overrightarrow{HN}+2\overrightarrow{HP})$

$=\frac{1}{2}(\overrightarrow{HA}+\overrightarrow{AM}+\overrightarrow{HB}+\overrightarrow{BM})+\overrightarrow{HB}+\overrightarrow{BN}+\overrightarrow{HC}+\overrightarrow{CN}+\overrightarrow{HC}+\overrightarrow{CP}+\overrightarrow{HA}+\overrightarrow{AP})$

$=\frac{1}{2}(2\overrightarrow{HA}+2\overrightarrow{HB}+2\overrightarrow{HC})=\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}$ nên 2 phương án A, D tương đương nhau.

Do đó có thể suy ra đáp án B là đáp án đúng.

 

Akai Haruma
31 tháng 8 2020 lúc 0:22

Nếu bạn muốn chứng minh hẳn tại sao đáp án B đúng thì có thể làm như sau:

Dễ thấy $\triangle ABC\sim \triangle NPM$ theo tỷ lệ $2$

Mà $H, H'$ lần lượt là trực tâm 2 tam giác trên

$\Rightarrow \frac{CH}{MH'}=2$

$\Leftrightarrow CH=2MH'(1)$

Mặt khác: $CH\perp AB; MH'\perp PN; AB\parallel PN$ nên $MH'\parallel CH(2)$

Từ $(1); (2)\Rightarrow 2\overrightarrow{H'M}=\overrightarrow{CH}$

Từ đây ta có:

$\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=\overrightarrow{HH'}+\overrightarrow{H'A}+\overrightarrow{HH'}+\overrightarrow{H'B}+\overrightarrow{HC}$

$=2\overrightarrow{HH'}+(\overrightarrow{H'A}+\overrightarrow{H'B})+\overrightarrow{HC}$

$=2\overrightarrow{HH'}+(\overrightarrow{H'A}+\overrightarrow{AM}+\overrightarrow{H'B}+\overrightarrow{BM})+\overrightarrow{HC}$

$=2\overrightarrow{HH'}+(\overrightarrow{H'M}+\overrightarrow{H'M})+\overrightarrow{HC}$

$=2\overrightarrow{HH'}+2\overrightarrow{H'M}+\overrightarrow{HC}$

$=2\overrightarrow{HH'}+\overrightarrow{CH}+\overrightarrow{HC}$

$=2\overrightarrow{HH'}$

Vậy đáp án B đúng.


Các câu hỏi tương tự
nguyễn hoàng lê thi
Xem chi tiết
Min Yoongi
Xem chi tiết
waru quan tiểu nguyệt
Xem chi tiết
yoo rachel
Xem chi tiết
Thanh Nga Nguyễn
Xem chi tiết
Sarah Trần
Xem chi tiết
Zy
Xem chi tiết
Thanh Nga Nguyễn
Xem chi tiết
Khanh Quynh
Xem chi tiết