a: BM/CN=BD/CD=AB/AC
=>AB/BM=AC/CN
Xét ΔAMN có AB/BM=AC/CN
nên BC//MN
b: ΔBDM cân tại B
=>góc BMD=góc BDM
=>góc BMD=góc DMN
=>MD là phân giác của góc AMN
a: BM/CN=BD/CD=AB/AC
=>AB/BM=AC/CN
Xét ΔAMN có AB/BM=AC/CN
nên BC//MN
b: ΔBDM cân tại B
=>góc BMD=góc BDM
=>góc BMD=góc DMN
=>MD là phân giác của góc AMN
Cho tam giác ABC , AD là tia phân giác của góc A(D thuộc BC ).
Trên tia đối của tia BA lấy điểm M sao cho MB=BD, trên tia đối của tia CA lấy điểm N sao cho CN=CD.
a) Chứng minh BC//MN
b) Chứng minh MD là tia phân giác của góc AMN.
Cho tam giác ABC, đường phân giác AD. Trên tia đối của tia BA lấy điểm E sao cho BD = BE. Trên tia đối tia CA lấy điểm F sao cho CF = CD.
a) Chứng minh rằng EF // BC
b) Chứng minh ED là phân giác góc BEF và FD là phân giác của góc CFE.
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
cho tam giác ABC vuông tại A, BD là phân giác của góc ABC (D thuộc AC). Trên BC lấy điểm K sao cho BK=BA a, Chứng minh tam giác BAD=tam giác BKD. Từ đó suy ra AD=DK b, chứng minh DK vuông góc với BC và góc ABK = góc CDK c, trên tia đối của tia DK lấy điểm E sao cho DE=DC. Chứng minh ba điểm B, A, E thẳng hàng.
Bài 3. Cho tam giác ABC, kẻ tia phân giác AD. Trên tia đối của tia BA, CA lần lượt lấy điểm E, F sao cho BE = BD, CF = CD. Chứng minh: a) BD CD BA CA . b) BE CF BA CA . c) EF BC / / . d) ED, FD lần lượt là phân giác góc BEF và CFE.
Cho tam giác ABC. Trên tia đối của tia BA, CA lần lượt lấy các điểm D và E sao cho BD=CE. Gọi M,N lần lượt là trung điểm của DE và BC. Chứng minh CM song song với tia phân giác của góc A
BÀI 1: Cho tam giác ABC. Trên tia đối của tia BA lấy D, trên tia đối của tia CA lấy E sao cho BD = CE = BC. Gọi M là giao điểm của BE và CD đường thẳng qua M song song với tia phân giác của góc BAC cắt AC ở F. Chứng minh rằng AB = CF.
BÀI 2:Cho tam giác đều ABC, điểm M thuộc cạnh BC. Gọi D là điểm đối xứng với M qua AB, E là điểm đối xứng với M qua AC. Vẽ hình bình hành MDNE. CMR: AN // BC.
Cho tam giác ABC (AB<AC). Trên tia đối của tia BA lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho BM=CN. Gọi D,E,P,Q lần lượt là trung điểm của BC,MN,MC,NB.
a)DQ cắt AM tại J. Chứng minh rằng góc PEQ=góc MJQ
b) DE cắt AN tại I. Chứng minh rằng DE song song với phân giác góc BAC
Bài 2. Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối tia của tia CB lấy điểm N sao cho BM = CN.
a) Chứng minh tam giác AMN cân.
b) Kẻ BE AM (EAM), CF AN (FAN). Chứng minh BME = CNF
.c) EB và FC kéo dài cắt nhau tại O. Chứng minh AO là tia phân giác của góc MAN.
d) Qua M kẻ đường thẳng vuông góc với AM, qua N kẻ đường thẳng vuông góc với AN, chúng cắt nhau ở H. Chứng minh ba điểm A, O, H thẳng hàng