a) Xét ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
\(\widehat{KBC}=\widehat{HCB}\)(hai góc ở đáy của ΔBAC cân tại A)
Do đó: ΔKBC=ΔHCB(cạnh huyền-góc nhọn)
Suy ra: BK=CH(hai cạnh tương ứng)
b) Ta có: AK+KB=AB(K nằm giữa A và B)
AH+HC=AC(H nằm giữa A và C)
mà KB=HC(cmt)
và AB=AC(ΔABC cân tại A)
nên AK=AH
Xét ΔABC có
K\(\in\)AB(gt)
H\(\in\)AC(gt)
\(\dfrac{AK}{AB}=\dfrac{AH}{AC}\left(\dfrac{AK}{AH}=\dfrac{AB}{AC}=1\right)\)
Do đó: KH//BC(Định lí Ta lét đảo)