a: Xét ΔBME vuông tại E và ΔCMF vuông tại F có
MB=MC
\(\widehat{EMB}=\widehat{FMC}\)
Do đó: ΔBME=ΔCMF
Suy ra: BE=CF
a: Xét ΔBME vuông tại E và ΔCMF vuông tại F có
MB=MC
\(\widehat{EMB}=\widehat{FMC}\)
Do đó: ΔBME=ΔCMF
Suy ra: BE=CF
Cho tam giác ABC (AB ≠ AC), tia Ax đi qua trung điểm M của BC. Kẻ BE và CF vuông góc với Ax (E thuộc Ax, F thuộc Ax).
a) So sánh độ dài BE và CF;
b) Chứng minh rằng EC // BF.
Cho tam giác ABC AB khác AC, tia Ax đi qua trung điểm M của BC. Kẻ BE và CF vuông góc với Ax (E,F thuộc Ax).
a) Chứng minh: BE//CP.
b) So sánh BE và FC; CE và BF.
c) Tìm điều kiện về tam giác ABC để có BE = CE.
Cho tam giác ABC (AB#AC) ,tia Ax đi qua trung điểm M của BC. Kẻ BE và CF vuông góc với Ax (E thuộc Ax;F thuộc Ax). so sánh các độ dà BE và CF.
Cho tam giác ABC (AB khác AC) tia Ax đi qua trung điểm M của BC. Kẻ BE và CF vuông góc với Ax (E thuộc Ax,F thuộc Ax) so sánh các độ dài BE và CF
cho tam giác abc , tia ax đi qua trung điểm M của cạnh bc . kẻ be,cf vuông góc với ax ( e, f thuộc ax) . cmr :
A)tam giác bme=tam giác cmf
B)ME=MF
C)CE=BF
D)CE//BF;BE//CF
Cho tam giác ABC, tia Ax đi qua trung điểm M của cạnh BC. Kẻ BE, CF vuông góc với Ax ( E,F thuộc Ax ). Chứng minh rằng:
a, Tam giác BME = tam giắc CMF
b, ME = MF
c, CE = BF
d, CE // BF
e, BE // CF
Giải chi tiết hộ mình nhá các bạn !!!
cho tam giác ABC ( AB\(\ne\)AC) tia Ax đi qua trung điểm M cua BC . Kẻ BE và CF vuông góc với Ax . ( E thuộc Ax , F Thuộc Ax)
a) So sanh do dai cua BE va CF
b) CM : EC \\BF
Cho tam giác ABC (AB<AC). Tia Ax đi qua trung điểm M của BC.Vẽ BE và CF vuông góc với Ax(E,F thuộc Ax)
Chứng minh : BE=CF
Cho tam giác ABC. Từ A kẻ tia Ax đi qua trung điểm M của cạnh BC, kẻ BE và CF vuông góc với Ax (E€Ax, F€Ax). Chứng minh BE=CF.(vẽ hình nhak)