Cho tam giác ABC vuông tại A, có AB=7cm,BC=25cm a) giải tam giác ABC ( làm tròn tới độ) b) kẻ đg cao AD. Tính AD.DC c) Gọi Q là trung điểm của AB. Kẻ QI vuông góc với BC ( I thuộc BC) CM :\(AC^2+\frac{BD^2}{4}=CI^2\)
Cho tam giác ABC vuông tại A, ba đường phân giác AD, BE, CF cắt nhau tại I (D thuộc BC, E thuộc AC, F thuộc AB). Vẽ AL vuông góc với BI và AK vuông góc với CI.
1) Chứng minh 2LK2 = AI2
2) Chứng minh LK // BC
3) Kẻ đường cao AH, gọi M là trung điểm của BC, MI cắt AH tại J. Chứng minh J là trực tâm tam giác ALK và
ẠJ= LK
Cho tam giác abc vuông tại A có Ah là đường cao. Biết AB = 6cm, BC = 10cm:
a) Giải tam giác ABC
b) Gọi D là hình chiếu của H lên AC. Tính AH, AD
c) Kẻ AE vuông góc BD tại E. Chứng minh AB = AC.tanBEH
Cho tam giác ABC nội tiếp nửa đường tròn đường kính BC (AB < AC) . Gọi K là trung điểm của AC
a) Chúng minh : OK vuông góc AC
b) Tiếp tuyến tại C của (O) cắt tia OK tại D . Gọi T là giao điểm của BD và (O) . Chứng minh : DK.DO = DT.DB
c) Vẽ AH vuông góc với BC tại H . Gọi I là giao điểm của AH và BD . Tia CI cắt đường thẳng AD tại E . Chứng minh : EB là tiếp tuyến của (O)
Cho tam giác ABC ( AB < AC) có 3 góc nhọn nội tiếp (O). AH là đường cao của tam giác ABC. Kẻ đường kính AD của (O). Từ 2 điểm B,C kẻ BE và CF vuông góc với AD lần lượt tại E,F.
Gọi I là trung điểm của BC. Chứng minh IE = IF.
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH.
a) Cho AB = 6 cm và cosABC = \(\dfrac{3}{5}\). Tính BC, AC, BH.
b) Kẻ HD vuông với AB tại D, AE vuông AC tại E. Chứng minh AD.AB = AE.AC.
c) Gọi I là trung điểm BC, AI cắt DE tại K. Chứng minh: \(\dfrac{1}{AK^2}=\dfrac{1}{AD^2}+\dfrac{1}{AE^2}\).
Bài 6. (3 điểm) Cho tam giác ABC vuông tại A có AB=6cm,BC =10cm.
a) Giải tam giác ABC.
b) Kẻ đường cao AH. Tính độ daif AH, HC.
c) Trên tia đối của tia AC lấy điểm D sao cho AD < AC , AI vuong góc BD . Gọi K là giao điểm của HI và AC. Chứng minh: BI .BD = BH.BC và KI .KH = KD.KC.
Cho tam giác ABC vuông tại A (AB < AC) , đường cao AH.
a) AB=6 cm, cos ABC = 3/5 . Tính BC,AC,AH.
b) Kẻ HD vuông góc với AB, HE vuông góc với AC . c/m: AD.AB=AE.AC.
c) Gọi I là trung điểm BC, AI cắt DE tại K. c/m: \(\dfrac{1}{AK^2}=\dfrac{1}{AD^2}+\dfrac{1}{AE^2}\)
Cho tam giác ABC vuông tại A(AB<AC). Kẻ đường cao AH
a. Chứng minh:\(\frac{AB^2}{AC^2}=\frac{BH}{CH}\)
b. Từ B vẽ đường thẳng vuông góc với trung tuyến AM cắt AH tại D và cắt AM tại E và cắt AC tại F. Chứng minh D là trung điểm của BF
c.Chứng minh: BE.BF=BH.BC
d.Biết AB=12 cm; BC=20cm. Tính AH,BH,HC
e.Tính độ dài DE va AF
f. Gọi J,I là hình chiếu của H trên AB,AC.Chứng minh: IJ vuông góc AM
g.Chứng minh: \(\frac{BJ}{CI}=\left(\frac{AB}{AC}\right)^3\)