cho tam giác ABC có 3 cạnh a, b, c thoả mãn a + b + c = 6
\(CMR:52\le3\left(a^2+b^2+c^2\right)+2abc<54\)
Cho a,b,c là 3 cạnh tam giác a+b+c=6
CMR: 52 < hoặc bằng \(3\left(a^2+b^2+c^2\right)+2abc\)<54
cho a,b,c>0 thỏa mãn a+b+c=3. chứng minh rằng: \(\left(abc\right)^2\left(a^2+b^2+c^2\right)\le3\)
Cho a, b, c là các số dương thỏa mãn điều kiện a+b+c+\(\sqrt{2abc}=2\)
CMR \(\sqrt{a\left(2-b\right)\left(2-c\right)}+\sqrt{b\left(2-c\right)\left(2-a\right)}+\sqrt{c\left(2-a\right)\left(2-b\right)}=\sqrt{8}+\sqrt{abc}\)
giúp mik vs nhé cảm ơn rất nhìu
1.Cho a,b,c là ba cạnh của một tam giác. CMR:
\(1.a^3+b^3+c^3+2abc< a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right) \)
\(2.\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\le abc\)
cho a ,b,c là 3 cạnh của tam giác
a, cmr nếu a+b+c =2 thì
\(a^2+b^2+c^2+2abc< 2\)
b, cm
\(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)
cho a,b,c>0 thỏa mãn \(a^4+b^4+c^4\le3\)
CMR
\(\frac{a^2}{c\left(a+b\right)^3}+\frac{b^2}{a\left(b+c\right)^3}+\frac{c^2}{^{b\left(c+a\right)^3}}\ge\frac{3}{8}\)
cho a,b,c là độ dài 3 cạnh tam giác. chứng minh a, abc>= ( a+b-c)(b+c-a)(c+a-b)
b,\(a^3+b^3+c^3+2abc< a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)
1.Cho a,b,c,dương thỏa mãn a+b+c=1.Tìm GTNN của P=a3+b3+1/4c3
2.Cho a,b,c ko âm thoả mãn a+b+c=1.CMR \(ab+bc+ca-2abc\le\frac{2}{27}\)
3.Cho a,b là các số dương thỏa mãn ab=1.Tìm GTNN cảu biểu thức \(F=\left(2a+2b-3\right)\left(a^3+b^3\right)+\frac{7}{\left(a+b\right)^2}\)