Cho tập hợp X={0;1;2;3;4;5;6;7;8;9}, người ta lập 2 tập hợp con của X, tập hợp A={0;1;2;...;n} gồm n+1 số tự nhiên đầu tiên và B={n+1;n+2;...;2n}. Từ mỗi tập hợp A và B đó, người ta lập số tự nhiên có 5 chữ số đôi một khác nhau, trong số đó có hai chữ số hàng chục nghìn và hàng nghìn được viết bởi các chữ số lấy trong tập hợp A, 3 chữ số còn lại được lấy trong tập hợp B. Hỏi lập được bao nhiêu số tự nhiên như vậy và số lớn nhất là bao nhiêu?
Cho n là số tự nhiên lớn hơn 2. Số các chỉnh hợp chập 2 của n phần tử là
A. n ( n - 1 ) 2 !
B. 2!.n.(n-1)
C. n.(n-1)
D. 2n
Cho tập hợp X = {1;2;3;4;…;n^3}. Chứng minh rằng, với mọi số tự nhiên n ≥ 2 luôn tồn tại tập con M của tập hợp X sao cho tập con M có n^2 phần tử và không có ba phần tử nào lập thành một cấp số cộng.
Cho dãy số ( u n ) thỏa mãn u n = u n - 1 + 6 , ∀ n ≥ 2 và log 2 u 5 + log 2 u 9 + 8 = 11 . Đặt S n = u 1 + u 2 + . . . + u n . Tìm số tự nhiên n nhỏ nhất thỏa mãn S n ≥ 2 5 .
A. 5
B. 4
C. 3
D. 7
Cho các số tự nhiên m, n thỏa mãn đồng thời các điều kiện C m 2 = 153 và C m n = C m n + 2 Khi đó m+n bằng
A. 25
B. 27
C. 26
D. 23
Cho hai số 3 n và 8n với n ∈ N * .
a) So sánh 3 n và 8n khi n = 1 , 2 , 3 , 4 , 5 .
b) Dự đoán kết quả tổng quát và chứng minh bằng phương pháp quy nạp
Cho n là số tự nhiên thoả mãn C n n + C n n - 1 + C n n - 2 = 79
Hệ số của x 5 trong khai triển của ( 2 x – 1 ) n là
A. -41184
B. 41184
C. -25344
D. 23344
Cho dãy số (Un), với un = 1/1×2+ 1/2×3 + 1/3×4 +...+ 1/n(n+1). Xét tính tăng, giảm và bị chặn của dãy số.
Tìm số tự nhiên n thỏa mãn:
C n 0 1 . 2 + C n 1 2 . 3 + C n 2 3 . 4 + . . . + C n n n + 2 n + 1 = 2 100 - n - 3 n + 1 n + 2
A. 99
B. 100
C. 98
D. 101