Cho f(x), g(x) là các hàm số liên tục trên R thỏa mãn ∫ 0 1 f x d x = 3 , ∫ 0 2 f x − 3 g x d x = 4 v à ∫ 0 2 2 f x + g x d x = 8 . Tính ∫ 1 2 f x d x
A. I = 1
B. I = 2
C. I = 3
D. I = 0
Câu 1:(0,5đ)
Liệt kê các phần tử của tập hợp A = {x ∈ N/15 ≤ x ≤ 19}
Câu 2: (3đ) thực hiện phép tính
a. 2.(72 – 2.32) – 60
b. 27.63 + 27.37
c. l-7l + (-8) + l-11l + 2
d. 568 – 34 {5.l9 – ( 4-1)2l + 10}
Câu 3: ( 2,5 điểm ) Tìm số nguyên x
a) 2x + 3 = 52 : 5
b) 105 – ( x + 7) = 27 : 25
Câu 4 (1 điểm): Học sinh lớp 6B khi xếp hàng 2, hàng 4, hàng 8 đều vừa đủ hàng. Biết số học sinh lớp đó trong khoảng 30 đến 38. Tính số học sinh của lớp 6B.
Câu 5:(1 điểm) Khi nào thì M là trung điểm của đoạn thẳng AB? Vẽ hình minh họa.
Câu 6: ( 2 điểm )Vẽ tia Ox, trên Ox lấy điểm A và B sao cho OA= 4cm, OB = 8cm.
a. Trong 3 điểm O, A, B điểm nào nằm giữa 2 điểm còn lại. Vì sao? . So sánh OA và AB
b. A có phải là trung điểm của OB không? Vì sao ?
Cho hàm số y=f(x) nhận giá trị không âm và liên tục trên đoạn [0;1]. Đặt g ( x ) = 1 + 2 ∫ 0 x f ( t ) d t . Biết g ( x ) ≥ [ f ( x ) ] 3 với mọi x ∈ [ 0 ; 1 ] . Tích phân ∫ 0 1 [ g ( x ) ] 2 3 d x có giá trị lớn nhất bằng
A. 5 3
B. 4.
C. 4 3
D. 5.
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(0;-2;-l), B(-2;-4;3), C(l;3;-l) và mặt phẳng P : x + y - 2 z - 3 = 0 . Tìm điểm M ∈ P sao cho M A → + M B → + 2 M C → đạt giá trị nhỏ nhất.
A. M 1 2 ; 1 2 ; - 1
B. M - 1 2 ; - 1 2 ; 1
C. M(2;2;-4)
D. (-2;-2;4)
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f' (x) như hình vẽ bên. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
1. Hàm số g(x) có 3 điểm cực trị.
2. Hàm số g(x)đạt cực tiểu tại x = 0.
3. Hàm số g(x)đạt cực đại tại x = 2.
4. Hàm số g(x)đồng biến trên khoảng (-2;0).
5. Hàm số g(x)nghịch biến trên khoảng (-1;1).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 1.
B. 4.
C. 3.
D. 2.
Cho hai đa thức
f(x)=3x2-x2+x-7+x4+6x3
g(x)= -2x2-4x4+6+4x2-6x3-x
a)Thu gọn và sắp xếp đa thức trên theo lũy thừa giảm dần của biến
b)Tính h(x)=g(x)+g(x)
c)Tìm nghiệm của đa thức h(x)
(mình cần chủ yếu là câu C)
Cho hàm số f ( x ) = x 3 + 3 a x 2 + 3 x + 3 có đồ thị (C) và g ( x ) = x 3 + 3 b x 2 + 9 x + 5 có đồ thị (H), với a, b lá các tham số thực. Đồ thị (C), (H) có chung ít nhất 1 điểm cực trị. Tìm giá trị nhỏ nhất của biểu thức P = a + 2 b
A. 21 .
B. 2 6 + 6.
C. 3 + 5 3 .
D. 2 6 .
Cho hai đa thức
f(x)=3x2-x2+x-7+x4+6x3
g(x)= -2x2-4x4+6+4x2-6x3-x
a)Thu gọn và sắp xếp đa thức trên theo lũy thừa giảm dần của biến
b)Tính h(x)=g(x)+g(x)
c)Tìm nghiệm của đa thức h(x)
(mình cần chủ yếu là câu C)
ai trả lời gấp dùm vs sẽ có hậu tạCho hàm số y=f(x) liên tục trên R có đạo hàm cấp 3 với f’’’(x)=0 và thỏa mãn f ( x ) ' 2018 1 - f ' ' ( x ) = 2 x ( x + 1 ) 2 ( x - 2018 ) 2019 : f ' ' ( x ) , ∀ x ∈ R Hàm số g ( x ) = f ' ( x ) 2019 1 - f ' ' ( x ) có bao nhiêu điểm cực trị?
A. 1
B.2
C.3
D. 4
Cho \(K=\frac{2\sqrt{x}+3}{\sqrt{x}-5}\).tìm g trị nguyên lớn nhất của x để K có giá trị là số nguyên dương