\(\sqrt{1.1998}< \frac{1+1998}{2}\)
\(S>\frac{2}{1999}+\frac{2}{1999}+...+\frac{2}{1999}=2.\frac{1998}{1999}\)
\(\sqrt{1.1998}< \frac{1+1998}{2}\)
\(S>\frac{2}{1999}+\frac{2}{1999}+...+\frac{2}{1999}=2.\frac{1998}{1999}\)
Cho \(S=\frac{1}{\sqrt{1.1998}}+\frac{1}{\sqrt{2.1997}}+..+\frac{1}{\sqrt{k\left(k.1998-k+1\right)}}+\frac{1}{\sqrt{1998-1}}\)
Hãy so sánh S và \(2\frac{1998}{1999}\)
Cho \(S=\frac{1}{\sqrt{1.1998}}+\frac{1}{\sqrt{2.1997}}+...+\frac{1}{\sqrt{k\left(1998-k+1\right)}}+...+\frac{1}{\sqrt{1998-1}}\)
Hãy so sánh \(S\) và \(2.\frac{1998}{1999}\)
Cho: \(S=\frac{1}{\sqrt{1.1998}}+\frac{1}{\sqrt{2.1997}}+...+\frac{1}{\sqrt{k.\left(1998-k+1\right)}}+...+\frac{1}{\sqrt{1998-1}}\)
Hãy so sánh: \(S\) và \(2.\frac{1998}{1999}\)
Cho
S = \(\frac{1}{\sqrt{1.2014}}+\frac{1}{\sqrt{2.2013}}+......+\frac{1}{\sqrt{k.\left(2014-k+1\right)}}+.....+\frac{1}{\sqrt{2014.1}}\)
Hãy so sánh S với \(2.\frac{2014}{2015}\)
Tính
1) \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{1999\sqrt{1998}+1998\sqrt{1999}}\)
2) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{1998}+\sqrt{1999}}\)
Tính \(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{1999\sqrt{1998}+1998\sqrt{1999}}\)
Cho S=\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{97\left(\sqrt{48}+\sqrt{49}\right)}\)
So sánh S với \(\frac{3}{7}\)
S = \(\frac{1}{3\left(\sqrt{1}+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{97\left(\sqrt{48}+\sqrt{49}\right)}\)
So sánh S với \(\frac{3}{7}\)
Tính
N=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{1999\sqrt{1998}+1998\sqrt{1999}}\)
giúp mình với