Cho (S) là mặt cầu tâm I 3 ; 0 ; 0 và tiếp xúc với mặt phẳng (P) có phương trình 2x - 2y - z + 3 = 0 . Khi đó, bán kính của (S) là.
A. 6
B. 4
C. 2
D. 3
Cho mặt cầu (S) có tâm I(2;1;-1) và tiếp xúc với mặt phẳng ( α ) có phương trình 2x-2y-z +3 = 0. Bán kính mặt cầu (S) là
A. 2 9
B. 2
C. 2 3
D. 4 3
Gọi (S) là mặt cầu tâm I (2;1;-1) và tiếp xúc với mặt phẳng (α) có phương trình:
2x – 2y – z + 3 = 0. Bán kính của (S) bằng:
A. 2.
B. 2 9
C. 2 3 .
D. 4 3
Cho mặt cầu (S) có phương trình x - 3 2 + y + 2 2 + z - 1 2 = 100 và mặt phẳng α có phương trình 2 x - 2 y - z + 9 = 0 . Tính bán kính của đường tròn (C) là giao tuyến của mặt phẳng α và mặt cầu (S)
A. 8
B. a = 4 6
C. 10
D. 6
Cho mặt cầu (S) có phương trình x − 3 2 + y + 2 2 + z − 1 2 = 100 và mặt phẳng α có phương trình 2 x − 2 y − z + 9 = 0 . Tính bán kính của đường tròn (c) là giao tuyến của mặt phẳng α và mặt cầu (S)
A. 8
B. a = 4 6
C. 10
D. 6
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x 2 = y - 3 1 = z - 2 1 và hai mặt phẳng
P x - 2 y + 2 z = 0 ; Q : x - 2 y + 3 z - 5 = 0 . Mặt cầu (S) có tâm I là giao điểm của đường thẳng d và mặt phẳng (P). Mặt phẳng (Q) tiếp xúc với mặt cầu (S). Viết phương trình của mặt cầu (S).
A. S : x + 2 2 + y + 4 2 + z + 3 2 = 1
B. S : x - 2 2 + y - 4 2 + z - 3 2 = 6
C. S : x - 2 2 + y - 4 2 + z - 3 2 = 2 7
D. S : x - 2 2 + y + 4 2 + z + 4 2 = 8
Cho A là giao điểm của đường thẳng d : x - 1 2 = y + 2 - 3 = z - 5 4 và mặt phẳng P : 2 x + 2 y - z + 1 = 0 . Phương trình mặt cầu (S) có tâm I(1;2;-3) và đi qua A là
A. x - 1 2 + y - 1 2 + z + 3 2 = 21
B. x - 1 2 + y - 2 2 + z + 3 2 = 25
C. x + 1 2 + y + 2 2 + z + 3 2 = 21
D. x + 1 2 + y + 2 2 + z + 3 2 = 25
Trong không gian hệ tọa độ Oxyz cho mặt cầu S x 2 + y 2 + z 2 − 2 x + 2 y − 4 z − 10 = 0 và mặt phẳng P : 2 x + y − z − 5 = 0 . Viết phương trình mặt phẳng (Q) song song với mặt phẳng (P) và cắt mặt cầu (S) theo đường tròn có bán kính bằng một nửa bán kính mặt cầu (S).
A. Q 1 : 2 x + y − z + 1 + 6 2 = 0 và Q 2 : 2 x + y − z + 1 − 6 2 = 0
B. Q 1 : 2 x + y − z + 1 + 2 3 = 0 và Q 2 : 2 x + y − z + 1 − 2 3 = 0
C. Q 1 : 2 x + y − z − 1 + 6 2 = 0 và Q 2 : 2 x + y − z − 1 − 6 2 = 0
D. Q 1 : 2 x + y − z + 2 3 = 0 và Q 2 : 2 x + y − z − 2 3 = 0
Trong không gian hệ tọa độ Oxyz cho mặt cầu S : x 2 + y 2 + z 2 - 2 x + 2 y - 4 z - 10 = 0 và mặt phẳng P : 2 x + y - z - 5 = 0 . Viết phương trình mặt phẳng (Q) song song với mặt phẳng (P) và cắt mặt cầu (S) theo đường tròn có bán kính bằng một nửa bán kính mặt cầu (S)
A. Q 1 : 2 x + y - z - 1 + 6 2 = 0 và Q 2 : 2 x + y - z - 1 - 6 2 = 0
B. Q 1 : 2 x + y - z + 1 + 6 2 = 0 và Q 2 : 2 x + y - z + 1 - 6 2 = 0
C. Q 1 : 2 x + y - z + 2 3 = 0 và Q 2 : 2 x + y - z - 2 3 = 0
D. Q 1 : 2 x + y - z - 1 + 2 3 = 0 và Q 2 : 2 x + y - z - 1 - 2 3 = 0