À làm cho bạn câu cuối nè. Hiểu rồi hiểu rồi.
\(x_1^2.x_2+x_1.x_2^2+30=0\)
\(\Leftrightarrow P.S=30\)
\(\Leftrightarrow\left(-2m+5\right)\left[-\left(2m-6\right)\right]=30\)
\(\Leftrightarrow\left(-2m+5\right)\left(-2m+6\right)=30\)
\(\Leftrightarrow4m^2-12m-10m+30=30\)
\(\Leftrightarrow4m^2-22m=0\)
\(\Leftrightarrow m\left(4m-22\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\\4m-22=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\m=\frac{11}{2}\end{cases}}}\)
Vậy: m = .. và .. là giá trị cần tìm
a/ ( a = 1; b = 2 (m-3); c = -2m + 5 )
\(\Delta=b^2-4ac\)
\(=\left[2\left(m-3\right)\right]^2-4.1.\left(-2m+5\right)\)
\(=4\left(m^2-6m+9\right)+8m-20\)
\(=4m^2-24m+36+8m-20\)
\(=4m^2-16m+16\)
\(=\left(2m\right)^2-16m+16\)
\(=\left(2m-4\right)^2\ge0\forall m\)
Vậy pt trên luôn có 2 nghiệm với mọi m
b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=\frac{-b}{a}=-\left[2\left(m-3\right)\right]\\P=x_1x_2=\frac{c}{a}=-2m+5\end{cases}}\)
Tới đây thôi. Đọc đề chả hiểu viết gì cả.