a) Xét : \(\Delta'=m^2-\left(m+2\right)=m^2-m-2\)
Theo định lí Vi-et , ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m+2\end{cases}}\)
Để phương trình có 2 nghiệm phân biệt không âm thì \(\hept{\begin{cases}x_1+x_2\ge0\\x_1.x_2\ge0\\\Delta'\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}2m\ge0\\m+2\ge0\\m^2-m-2\ge0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}m\ge2\\m\le-1\end{cases}}\)
b) Nhận xét : P > 0
\(P^2=x_1+x_2+2\sqrt{x_1.x_2}=2m+2\sqrt{m+2}\Rightarrow P=\sqrt{2m+2\sqrt{m+2}}\) (vì P>0)